Research Article
BibTex RIS Cite

Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data

Year 2024, , 156 - 166, 23.01.2024
https://doi.org/10.21205/deufmd.2024267618

Abstract

Characterization of fault zones plays an important role for earthquake studies, geothermal and mineral resource exploration. This problem can be achieved by optimizing parameters of a defined synthetic model iteratively using gravity, gravity gradients or magnetic data. Curvature gradients indicate deviations of an equipotential surface from a spherical surface, therefore, reflecting deviations of mass distributions from a source point. In this study, differential curvature gradient is used as it identifies linear structures such as dip-slip faults and geological contacts. Curvature gradients are computed from gravity gradient observations which are derived from the high-resolution Earth Gravitational Model 2008. Estimating the fault parameters from gravity gradients is a complex nonlinear geophysical inverse problem that requires finding the minimum of a multi-variable cost function. A global optimization technique called simulated annealing (SA) is used to estimate location, dip angle and some depth parameters of the faults located in southwest side of the Thrace basin in Türkiye. In the optimization technique, a straight solution is inevitably applied to calculate the theoretical anomaly to be compared with the observed anomaly in each search step. In this case, the problem requires constructing a mathematical or geophysical interpretation model. Such a model is designed as a dip-slip fault model. The results show that dip angle estimates indicate high-angle faults which are found to be consistent with the seismic studies.

References

  • Perinçek, D. 1991. Possible Strand of the North Anatolian Fault in the Thrace Basin, Turkey-An Interpretation, The American Association of Petroleum Geologists Bulletin, V. 75, 241-257.
  • Turgut, S., Türkarslan, M. and Perinçek, D. 1991. Evolution of the Thrace Sedimentary basin and its hydrocarbon prospectivity, in generation, accumulation and production of Europe’s hydrocarbons, special publication of the European Association of Petroleum Geoscientists, Oxford University Press, No.1, 415-437.
  • Perinçek, D., Ataş, N., Karatut, Ş. and Erensoy, E. 2015. Geological Factors controlling potential of Lignite Beds within, the Danişmen Formation in the Thrace Basin, Bulletin of the Mineral Research and Exploration, issue. 150, 79-110.
  • Coşkun, B. 2000. Influence of the Istranca-Rhodope Massifs and Strands of the North Anatolian Fault on oil potential of Thrace Basin, NW Turkey, Journal of Petroleum Science and Engineering, V.27, 1-25.
  • Siyako, M. and Huvaz, O. 2007. Eocene Stratigraphic evolution of the Thrace Basin, Turkey, Sedimentary Geology, V.198, 75-91.
  • Demir, D., Bilim, F., Aydemir, A. and Ates, A. 2012. Modelling of Thrace Basin, NW Turkey using gravity and magnetic anomalies with control of seismic and borehole data, Journal of Petroleum Science and Engineering, V.86-87. 44-53. DOI:10.1016/j.petrol.2012.03.013
  • Elmas, A., Yılmaz, I and Kırcı, E. 2008. Güneybatı Trakyada Neojen-Erken Kuvaterner döneminde etkili olan yapısal özelliklerin araştırılması, The Scientific and Technical Research Council of Turkey, Ankara, Report No:105Y299, p.157.
  • Aydogan, D., Pinar, A., Elmas, A., Bal, O. T. and Yuksel, S. 2013. Imaging of subsurface lineaments in the southwestern part of the Thrace Basin from gravity data: Earth Planets Space, V.65, 299-309. DOI: 10.5047/eps.2012.08.014
  • Tekkeli, A. B. 2013. Modeling of Gravity Anomalies using Genetic and Particle Swarm Algorithms, PhD thesis, Istanbul Technical University, p.147.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.F. 2012. The development and evaluation of Earth Gravitational Model (EGM2008): Journal of Geophysical Research, V.117, B04406, DOI: 10.1029/2011JB008916.
  • Jekeli, C. 2017. Spectral Methods in Geodesy and Geophysics, Taylor and Francis, p.310.
  • Hofmann-Wellenhof, B. and Moritz, H. 2005. Physical Geodesy, Springer Verlag, Berlin, p.397.
  • Heiland, C.A.1940. Geophysical Exploration, Prentice-Hall, New York.
  • Jekeli, C. 2015. Potential theory and static gravity field of the Earth. Treatise on Geophysics, 2nd edition, G Schubert (ed.), Vol. 3, 9-35. Elsevier Publ., Oxford.
  • Reed, G.B. 1973. Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometry. Report no.201, Department of Geodetic Science, Ohio State University, Columbus, Ohio.
  • Uzun, S. (2013). Estimating parameters of subsurface structures from airborne gravity gradiometry data using a Monte-Carlo Optimization Method. Report no.506, Geodetic Science, Ohio State University, Ohio.
  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N. and Teller, A.H. 1953. Equation of state calculations by fast computing Machines: The Journal of Chemical Physics, V.21, no.6, 1087-1092.
  • Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images: IEEE Transactions on Pattern Analysis and Machine Intelligence, V.6, no.6, 721-741.
  • Chib, S. and Greenberg, E. (1995): Understanding the Metropolis-Hastings Algorithm, The American Statistician, V.49, no.4, 327-335.
  • Elmas, A and Şengül, A. 2013. Miocene formations and NE- trending right-lateral strike-slip tectonism in Thrace, Northwest Turkey: Geodynamic Implications, International Geology Review, V.55, no.6, 705-729. DOI: 10.1080/00206814.2012.734041
  • Corana, A.M., Marchesi, M., Martini, C. and Ridella, S.1986. Minimizing Multimodal Functions of continuous Variables with the Simulated Annealing, ACM Transactions on Mathematical Software, V.13, 262-280.

Trakya Havzasının Güneybatısında Fay Parametrelerinin Gravite Gradyent Verilerinden Kestirimi

Year 2024, , 156 - 166, 23.01.2024
https://doi.org/10.21205/deufmd.2024267618

Abstract

Fay zonlarının tanımlaması, deprem çalışmaları, jeotermal ve mineral kaynakların araştırılmasında önemli bir rol oynar. Bu problem tanımlanmış bir sentetik modelin parametrelerinin gravite, gravite gradyentleri ya da manyetik verilerden iteratif olarak optimize ederek çözülebilir. Eğrilik gradyentleri, bir eşpotansiyelli yüzeyin küresel bir yüzeyden sapmalarını ifade eder ve bu nedenle kütle dağılımlarının kaynak noktadan sapmalarını yansıtır. Bu çalışmada, eğim atımlı faylar ve jeolojik dokanaklar gibi doğrusal yapıları tanımlayan diferansiyel eğrilik gradyentleri kullanılmıştır. Eğrilik gradyentleri yüksek çözünürlüklü Yer Gravite Modeli 2008’ den türetilen gravite gradyentlerinden hesaplanmıştır. Gravite gradyentlerinden fay parametrelerinin kestirimi çok değişkenli hata fonksiyonunun minimum değerini bulmayı gerektiren kompleks doğrusal olmayan bir jeofiziksel ters çözüm problemidir. Benzetimli tavlama olarak adlandırılan bir global optimizasyon yöntemi, Türkiyede Trakya havzasının güneybatısındaki fayların eğim açısı, konumu ve bazı derinlik parametrelerinin kestirimi için kullanılmıştır. Optimizasyon tekniğinde, her bir arama adımında gözlenen anomali ile karşılaştırılacak olan kuramsal anomaliyi hesaplamak için kaçınılmaz olarak düz çözüm de uygulanmaktadır. Bu durumda problem bir matematiksel veya jeofiziksel yorum modelinin kurgulanmasını gerektirir. Böyle bir model eğim atımlı fay modeli olarak tasarlanmıştır. Sonuçlar eğim açısı tahminlerinin sismik çalışmalarla uyumlu bulunan yüksek eğim açılı faylara işaret ettiğini göstermektedir.

References

  • Perinçek, D. 1991. Possible Strand of the North Anatolian Fault in the Thrace Basin, Turkey-An Interpretation, The American Association of Petroleum Geologists Bulletin, V. 75, 241-257.
  • Turgut, S., Türkarslan, M. and Perinçek, D. 1991. Evolution of the Thrace Sedimentary basin and its hydrocarbon prospectivity, in generation, accumulation and production of Europe’s hydrocarbons, special publication of the European Association of Petroleum Geoscientists, Oxford University Press, No.1, 415-437.
  • Perinçek, D., Ataş, N., Karatut, Ş. and Erensoy, E. 2015. Geological Factors controlling potential of Lignite Beds within, the Danişmen Formation in the Thrace Basin, Bulletin of the Mineral Research and Exploration, issue. 150, 79-110.
  • Coşkun, B. 2000. Influence of the Istranca-Rhodope Massifs and Strands of the North Anatolian Fault on oil potential of Thrace Basin, NW Turkey, Journal of Petroleum Science and Engineering, V.27, 1-25.
  • Siyako, M. and Huvaz, O. 2007. Eocene Stratigraphic evolution of the Thrace Basin, Turkey, Sedimentary Geology, V.198, 75-91.
  • Demir, D., Bilim, F., Aydemir, A. and Ates, A. 2012. Modelling of Thrace Basin, NW Turkey using gravity and magnetic anomalies with control of seismic and borehole data, Journal of Petroleum Science and Engineering, V.86-87. 44-53. DOI:10.1016/j.petrol.2012.03.013
  • Elmas, A., Yılmaz, I and Kırcı, E. 2008. Güneybatı Trakyada Neojen-Erken Kuvaterner döneminde etkili olan yapısal özelliklerin araştırılması, The Scientific and Technical Research Council of Turkey, Ankara, Report No:105Y299, p.157.
  • Aydogan, D., Pinar, A., Elmas, A., Bal, O. T. and Yuksel, S. 2013. Imaging of subsurface lineaments in the southwestern part of the Thrace Basin from gravity data: Earth Planets Space, V.65, 299-309. DOI: 10.5047/eps.2012.08.014
  • Tekkeli, A. B. 2013. Modeling of Gravity Anomalies using Genetic and Particle Swarm Algorithms, PhD thesis, Istanbul Technical University, p.147.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.F. 2012. The development and evaluation of Earth Gravitational Model (EGM2008): Journal of Geophysical Research, V.117, B04406, DOI: 10.1029/2011JB008916.
  • Jekeli, C. 2017. Spectral Methods in Geodesy and Geophysics, Taylor and Francis, p.310.
  • Hofmann-Wellenhof, B. and Moritz, H. 2005. Physical Geodesy, Springer Verlag, Berlin, p.397.
  • Heiland, C.A.1940. Geophysical Exploration, Prentice-Hall, New York.
  • Jekeli, C. 2015. Potential theory and static gravity field of the Earth. Treatise on Geophysics, 2nd edition, G Schubert (ed.), Vol. 3, 9-35. Elsevier Publ., Oxford.
  • Reed, G.B. 1973. Application of kinematical geodesy for determining the short wave length components of the gravity field by satellite gradiometry. Report no.201, Department of Geodetic Science, Ohio State University, Columbus, Ohio.
  • Uzun, S. (2013). Estimating parameters of subsurface structures from airborne gravity gradiometry data using a Monte-Carlo Optimization Method. Report no.506, Geodetic Science, Ohio State University, Ohio.
  • Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N. and Teller, A.H. 1953. Equation of state calculations by fast computing Machines: The Journal of Chemical Physics, V.21, no.6, 1087-1092.
  • Geman, S. and Geman, D. 1984. Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images: IEEE Transactions on Pattern Analysis and Machine Intelligence, V.6, no.6, 721-741.
  • Chib, S. and Greenberg, E. (1995): Understanding the Metropolis-Hastings Algorithm, The American Statistician, V.49, no.4, 327-335.
  • Elmas, A and Şengül, A. 2013. Miocene formations and NE- trending right-lateral strike-slip tectonism in Thrace, Northwest Turkey: Geodynamic Implications, International Geology Review, V.55, no.6, 705-729. DOI: 10.1080/00206814.2012.734041
  • Corana, A.M., Marchesi, M., Martini, C. and Ridella, S.1986. Minimizing Multimodal Functions of continuous Variables with the Simulated Annealing, ACM Transactions on Mathematical Software, V.13, 262-280.
There are 21 citations in total.

Details

Primary Language English
Subjects Geological Sciences and Engineering (Other)
Journal Section Research Article
Authors

Sibel Uzun 0000-0001-5814-7054

Early Pub Date January 22, 2024
Publication Date January 23, 2024
Published in Issue Year 2024

Cite

APA Uzun, S. (2024). Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(76), 156-166. https://doi.org/10.21205/deufmd.2024267618
AMA Uzun S. Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data. DEUFMD. January 2024;26(76):156-166. doi:10.21205/deufmd.2024267618
Chicago Uzun, Sibel. “Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, no. 76 (January 2024): 156-66. https://doi.org/10.21205/deufmd.2024267618.
EndNote Uzun S (January 1, 2024) Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 76 156–166.
IEEE S. Uzun, “Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data”, DEUFMD, vol. 26, no. 76, pp. 156–166, 2024, doi: 10.21205/deufmd.2024267618.
ISNAD Uzun, Sibel. “Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/76 (January 2024), 156-166. https://doi.org/10.21205/deufmd.2024267618.
JAMA Uzun S. Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data. DEUFMD. 2024;26:156–166.
MLA Uzun, Sibel. “Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 26, no. 76, 2024, pp. 156-6, doi:10.21205/deufmd.2024267618.
Vancouver Uzun S. Estimation of Fault Parameters in Southwest of the Thrace Basin from Gravity Gradient Data. DEUFMD. 2024;26(76):156-6.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.