Research Article
BibTex RIS Cite

Regional Flood Frequency Analysis of Northern Iran

Year 2024, , 272 - 280, 27.05.2024
https://doi.org/10.21205/deufmd.2024267711

Abstract

The combination of the L-moment approach and multiple regression offers an attractive solution to provide flood estimation at ungauged sites within the Gorganrood and Ghare-sou river basins in the north of Iran. This research has two main goals including regionalization by cluster analysis and regional estimation of flood quantile at the site of interest. After data analysis regarding climatic and hydrologic data series, hierarchical approach was carried out to identify homogeneous regions. The homogeneity test was done by H-Statistic, a testing method based on L-moments. The results showed that a subdivision of selected watersheds into homogenous groups is necessary; therefore, two homogenous regions were formed. In the present study, five three-parameter distributions were fitted to the homogeneous regions and the best-fit one was identified using the L-moments approach. The results of the goodness-of-fit analysis for the two regions introduced the Generalized Pareto (GPA) distribution for both regions as acceptably close fits to the regional average L-moments. Besides, multiple regression was applied to diagnose the effective independent parameters on discharge value. The results reported percent of permeable formations, average annual precipitation, and stream slope as the most effective variables.

References

  • Hamed, K. and Rao, A.R. eds. 2019. Flood frequency analysis. CRC press.
  • Lawrence, D. 2020. The uncertainty introduced by flood frequency analysis in projections for changes in flood magnitudes under a future climate in Norway, Journal of Hydrology: Regional Studies, 28, p.100675.
  • Hasan, I.F. 2020. Flood Frequency Analysis of Annual Maximum Streamflows at Selected Rivers in Iraq, Jordan Journal of Civil Engineering, 14.4
  • Malekinezhad, H., Nachtnebel, H.P. and Klik, A. 2011. Comparing the index-flood and multiple-regression methods using L-moments, Physics and Chemistry of the Earth, Parts A/B/C, 36.1-4, p.54-60.
  • Maghsood, F.F., Moradi, H., Massah Bavani, A.R., Panahi, M., Berndtsson, R. and Hashemi, H. 2019. Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios, Water, 11.2, p. 273.
  • State Water Policy, Government of Rajasthan, 1999. Department of Irrigation. http://waterresources.rajasthan.gov.in/.
  • Stedinger, J.R. and Tasker, G.D. 1985. Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared, Water Resources Research, 21.9, p.1421-1432.
  • GREHY, G.D.R.E.S. 1996. Presentation and review of some methods for regional flood frequency analysis, Journal of hydrology (Amsterdam), 186.1-4, p.63-84.
  • Jingyi, Z. and Hall, M.J. 2004. Regional flood frequency analysis for the Gan-Ming River basin in China, Journal of Hydrology, 296.1-4, p.98-117.
  • Bhat, M.S., Alam, A., Ahmad, B., Kotlia, B.S., Farooq, H., Taloor, A.K. and Ahmad, S. 2019. Flood frequency analysis of river Jhelum in Kashmir basin, Quaternary International, 507, p.288-294.
  • Cafiero, L., Monforte, I., Mazzoglio, P., Ganora, D., Laio, F., Claps, P. and Viglione, A. 2023. Bayesian Spatially Smooth Regional Estimation of flood quantiles: Case study in Northern Italy, In Titolo volume non avvalorato, IUGG.
  • Kim, N.W., Lee, J.Y., Park, D.H. and Kim, T.W. 2019. Evaluation of future flood risk according to RCP scenarios using a regional flood frequency analysis for ungauged watersheds, Water, 11.5, p.992.
  • Acreman, M. and Wiltshire, S. 1989. The regions are dead. Long live the regions. Methods of identifying and dispensing with regions for flood frequency analysis, IAHS-AISH publication, 187, p.175-188.
  • Burn, D. H. 1990. Evaluation of regional flood frequency analysis with a region of influence approach, Water Resources Research, 26.10, p.2257-2265.
  • Burn, D.H. 1997. Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of hydrology, 202.1-4, p.212-230.
  • Hosking, J.R.M. and Wallis, J.R. 1997. Regional frequency analysis, p. 240.
  • Shu, C. and Burn, D.H. 2004. Homogeneous pooling group delineation for flood frequency analysis using a fuzzy expert system with genetic enhancement. Journal of Hydrology, 291.1-2, p.132-149.
  • Ouarda, T.B.M.J., Ba, K., Diaz-Delgado, C., Carsteanu, A., Gingras, H., Quentin, E., Trujillo, E. and Bobee, B. 2007, May. Regional flood frequency estimation at ungauged sites in the Balsas River Basin, Mexico, In AGU Spring Meeting Abstracts (Vol. 2007, p. H51B-02).
  • Shu, C. and Ouarda, T.B. 2008. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system, Journal of Hydrology, 349.1-2, p.31-43.
  • Pagliero, L., Bouraoui, F., Diels, J., Willems, P. and McIntyre, N. 2019. Investigating regionalization techniques for large-scale hydrological modelling, Journal of hydrology, 570, p.220-235.
  • Song, Z., Xia, J., Wang, G., She, D., Hu, C. and Hong, S. 2022. Regionalization of hydrological model parameters using gradient boosting machine, Hydrology and Earth System Sciences, 26.2, p.505-524.
  • Tasker, G.D. and Thomas Jr, W.O. 1978. Flood-frequency analyses with prerecord information, Journal of the Hydraulics Division, 104.2, p.249-259.
  • Acreman, M.C. and Sinclair, C.D. 1986. Classification of drainage basins according to their physical characteristics; an application for flood frequency analysis in Scotland, Journal of Hydrology, 84.3-4, p.365-380.
  • Stamey, T.C. and Hess, G.W. 1993. Techniques for estimating magnitude and frequency of floods in rural basins of Georgia, Water-Resources Investigations Report, 93, p.4016.
  • Kjeldsen, T.R., Smithers, J.C. and Schulze, R.E. 2002. Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method, Journal of hydrology, 255.1-4, p.194-211.
  • Farsadnia, F., Kamrood, M.R., Nia, A.M., Modarres, R., Bray, M.T., Han, D. and Sadatinejad, J. 2014. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps, Journal of Hydrology, 509, p.387-397.
  • Calegario, A.T., Pruski, F.F., Ribeiro, R.B., Ramos, M.C. and Rego, F.S. 2020. Physical analysis of regionalized flow as an aid in the identification of hydrologically homogeneous regions, Engenharia Agrícola, 40, p.334-343.
  • Walling, D.E. and Fang, D. 2003. Recent trends in the suspended sediment loads of the world's rivers, Global and planetary change, 39.1-2, p.111-126.
  • Walling, D.E. 2006. Human impact on land–ocean sediment transfer by the world's rivers, Geomorphology, 79.3-4, p.192-216.
  • Lamontagne, J.R., Stedinger, J.R., Yu, X., Whealton, C.A. and Xu, Z. 2016. Robust flood frequency analysis: Performance of EMA with multiple Grubbs‐Beck outlier tests, Water Resources Research, 52.4, p.3068-3084.
  • Khazar Water Consulting Engineers Company, 1377. Report on the integration of studies on water resources of the Gorganrood and Qarasu basins, vol. 3.
  • Jamab Consulting Engineers, 1378, Report on Country Water Master Plan, Total and Coastal Watershed, Ministry of Energy, Tehran.
  • Nautiyal, M.D. 1994. Morphometric analysis of a drainage basin using aerial photographs: a case study of Khairkuli Basin, District Dehradun, UP, Journal of the Indian Society of Remote Sensing, 22, p.251-261.
  • Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components, Journal of educational psychology, 24.6, p.417.
  • Zavareh, M., Maggioni, V., and Sokolov, V. 2021. Investigating water quality data using principal component analysis and granger causality, Water, 13.3, p.343.
  • Erunova, M.G., and Yakubailik, O.E. 2023. Methods and technologies for spatial analysis of regional ecosystems based on the watershed approach, Integrated Environmental Assessment and Management, 19.4, p.972-979.
  • McKenna Jr, J.E. 2003. An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis, Environmental Modelling & Software, 18.3, p.205-220.
  • Mohammadi, S.A. and Prasanna, B.M. 2003. Analysis of genetic diversity in crop plants—salient statistical tools and considerations, Crop science, 43.4, p.1235-1248.
  • Vega, M., Pardo, R., Barrado, E. and Debán, L. 1998. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water research, 32.12., p.3581-3592.
  • Otto, M. 1998. Multivariate methods. Analytical chemistry, 916.
  • Cupak, A. and Michalec, B. 2022. Regionalisation of watersheds with respect to low flow, Journal of Water and Land Development, 55.
  • Ward Jr, J.H. 1963. Hierarchical grouping to optimize an objective function, Journal of the American statistical association, 58.301, p.236-244.
  • Willmott, C.J. and Vernon, M.T. 1980. Solar climates of the conterminous United States: A preliminary investigation, Solar Energy, 24.3, p.295-303.
  • Winkler, J.A. 1985. Regionalization of the diurnal distribution of summertime heavy precipitation. In Preprints, Sixth Conf. on Hydrometeorology, Indianapolis, IN, Amer. Meteor. p. 9-16.
  • Kalkstein, L.S. and Corrigan, P. 1986. A synoptic climatological approach for geographical analysis: assessment of sulfur dioxide concentrations, Annals of the Association of American Geographers, 76.3, p.381-395.
  • Nathan, R.J. and McMahon, T.A. 1990. Identification of homogeneous regions for the purposes of regionalization, Journal of Hydrology, 121.1-4, p.217-238.
  • Adhami, M. 2012. Estimation of suspended sediment load using physical characteristics in Gorganroud and Ghareh-Sou Watersheds. Gorgan University of Agricultural Sciences and Natural Resources. MS Thesis, p125, Gorgan, Iran.
  • Hosking, J.R.,1990. L-moments: analysis and estimation of distributions using linear combinations of order statistics, Journal of the Royal Statistical Society Series B: Statistical Methodology, 52.1, p.105-124.
  • Vogel, R.M. and Fennessey, N.M. 1993. L moment diagrams should replace product moment diagrams, Water resources research, 29.6., p.1745-1752.
  • Hosking, J.R.M. and Wallis, J.R. 1993. Some statistics useful in regional frequency analysis, Water resources research, 29.2., p.271-281.
  • Pandey, G.R. and Nguyen, V.T.V. 1999. A comparative study of regression based methods in regional flood frequency analysis, Journal of Hydrology, 225.1-2, p.92-101.
  • Yu, G., Wright, D.B., Zhu, Z., Smith, C. and Holman, K.D. 2019. Process-based flood frequency analysis in an agricultural watershed exhibiting nonstationary flood seasonality, Hydrology and Earth System Sciences, 23.5, p.2225-2243.
  • Moazzami, M., Feyznia, S. 2016. Regional Analysis of Suspended Sediment (Case Study of Jarhiri River), 4th National Conference on Watershed Science and Engineering of Iran, Watershed Management, Karaj.

Kuzey İran'ın Bölgesel Taşkın Frekans Analizi

Year 2024, , 272 - 280, 27.05.2024
https://doi.org/10.21205/deufmd.2024267711

Abstract

L-moment yaklaşımı ve çoklu regresyonun kombinasyonu, İran'ın kuzeyindeki Gorganrood ve Ghare-sou nehri havzalarındaki ölçüm olmayan alanlarda taşkını tahmin etmek için cazip bir çözüm sunmaktadır. Bu araştırma, kümeleme analizi ile çalışma alanının bölgeselleştirilmesi ve taşkın kuantillerinin bölgesel tahmini olmak üzere iki ana amaca yöneliktir. Verilerin analizinden sonra homojen bölgeleri belirlemek için hiyerarşik bir yaklaşım gerçekleştirilmiştir. Homojenlik testi, L-momentlerine dayalı bir test yöntemi olan H-Statistic ile yapılmıştır. Sonuçlar, seçilen havzaların homojen gruplara bölünmesinin gerekli olduğunu göstermiştir; dolayısıyla iki homojen bölge oluşmuştur. Bu çalışmada, homojen bölgelerde beş adet üç parametreli dağılımın uyumluluğu incelenmiş ve en uygun dağılım L-momentler yaklaşımı kullanılarak belirlenmiştir. İki bölge için uyumluluk analizinin sonuçları, her iki bölge için de Generalized Pareto (GPA) dağılımını, bölgesel ortalama L-momentlerine kabul edilebilir ölçüde yakın olduğunu göstermiştir. Ayrıca debi üzerindeki etkili bağımsız değişkenlerin tespiti için çoklu regresyon uygulanmıştır. Sonuçlar geçirgen formasyonların yüzdesi, yıllık ortalama sıcaklık ve akarsu eğiminin en etkili değişkenler olduğunu göstermektedir.

References

  • Hamed, K. and Rao, A.R. eds. 2019. Flood frequency analysis. CRC press.
  • Lawrence, D. 2020. The uncertainty introduced by flood frequency analysis in projections for changes in flood magnitudes under a future climate in Norway, Journal of Hydrology: Regional Studies, 28, p.100675.
  • Hasan, I.F. 2020. Flood Frequency Analysis of Annual Maximum Streamflows at Selected Rivers in Iraq, Jordan Journal of Civil Engineering, 14.4
  • Malekinezhad, H., Nachtnebel, H.P. and Klik, A. 2011. Comparing the index-flood and multiple-regression methods using L-moments, Physics and Chemistry of the Earth, Parts A/B/C, 36.1-4, p.54-60.
  • Maghsood, F.F., Moradi, H., Massah Bavani, A.R., Panahi, M., Berndtsson, R. and Hashemi, H. 2019. Climate change impact on flood frequency and source area in northern Iran under CMIP5 scenarios, Water, 11.2, p. 273.
  • State Water Policy, Government of Rajasthan, 1999. Department of Irrigation. http://waterresources.rajasthan.gov.in/.
  • Stedinger, J.R. and Tasker, G.D. 1985. Regional hydrologic analysis: 1. Ordinary, weighted, and generalized least squares compared, Water Resources Research, 21.9, p.1421-1432.
  • GREHY, G.D.R.E.S. 1996. Presentation and review of some methods for regional flood frequency analysis, Journal of hydrology (Amsterdam), 186.1-4, p.63-84.
  • Jingyi, Z. and Hall, M.J. 2004. Regional flood frequency analysis for the Gan-Ming River basin in China, Journal of Hydrology, 296.1-4, p.98-117.
  • Bhat, M.S., Alam, A., Ahmad, B., Kotlia, B.S., Farooq, H., Taloor, A.K. and Ahmad, S. 2019. Flood frequency analysis of river Jhelum in Kashmir basin, Quaternary International, 507, p.288-294.
  • Cafiero, L., Monforte, I., Mazzoglio, P., Ganora, D., Laio, F., Claps, P. and Viglione, A. 2023. Bayesian Spatially Smooth Regional Estimation of flood quantiles: Case study in Northern Italy, In Titolo volume non avvalorato, IUGG.
  • Kim, N.W., Lee, J.Y., Park, D.H. and Kim, T.W. 2019. Evaluation of future flood risk according to RCP scenarios using a regional flood frequency analysis for ungauged watersheds, Water, 11.5, p.992.
  • Acreman, M. and Wiltshire, S. 1989. The regions are dead. Long live the regions. Methods of identifying and dispensing with regions for flood frequency analysis, IAHS-AISH publication, 187, p.175-188.
  • Burn, D. H. 1990. Evaluation of regional flood frequency analysis with a region of influence approach, Water Resources Research, 26.10, p.2257-2265.
  • Burn, D.H. 1997. Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of hydrology, 202.1-4, p.212-230.
  • Hosking, J.R.M. and Wallis, J.R. 1997. Regional frequency analysis, p. 240.
  • Shu, C. and Burn, D.H. 2004. Homogeneous pooling group delineation for flood frequency analysis using a fuzzy expert system with genetic enhancement. Journal of Hydrology, 291.1-2, p.132-149.
  • Ouarda, T.B.M.J., Ba, K., Diaz-Delgado, C., Carsteanu, A., Gingras, H., Quentin, E., Trujillo, E. and Bobee, B. 2007, May. Regional flood frequency estimation at ungauged sites in the Balsas River Basin, Mexico, In AGU Spring Meeting Abstracts (Vol. 2007, p. H51B-02).
  • Shu, C. and Ouarda, T.B. 2008. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system, Journal of Hydrology, 349.1-2, p.31-43.
  • Pagliero, L., Bouraoui, F., Diels, J., Willems, P. and McIntyre, N. 2019. Investigating regionalization techniques for large-scale hydrological modelling, Journal of hydrology, 570, p.220-235.
  • Song, Z., Xia, J., Wang, G., She, D., Hu, C. and Hong, S. 2022. Regionalization of hydrological model parameters using gradient boosting machine, Hydrology and Earth System Sciences, 26.2, p.505-524.
  • Tasker, G.D. and Thomas Jr, W.O. 1978. Flood-frequency analyses with prerecord information, Journal of the Hydraulics Division, 104.2, p.249-259.
  • Acreman, M.C. and Sinclair, C.D. 1986. Classification of drainage basins according to their physical characteristics; an application for flood frequency analysis in Scotland, Journal of Hydrology, 84.3-4, p.365-380.
  • Stamey, T.C. and Hess, G.W. 1993. Techniques for estimating magnitude and frequency of floods in rural basins of Georgia, Water-Resources Investigations Report, 93, p.4016.
  • Kjeldsen, T.R., Smithers, J.C. and Schulze, R.E. 2002. Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method, Journal of hydrology, 255.1-4, p.194-211.
  • Farsadnia, F., Kamrood, M.R., Nia, A.M., Modarres, R., Bray, M.T., Han, D. and Sadatinejad, J. 2014. Identification of homogeneous regions for regionalization of watersheds by two-level self-organizing feature maps, Journal of Hydrology, 509, p.387-397.
  • Calegario, A.T., Pruski, F.F., Ribeiro, R.B., Ramos, M.C. and Rego, F.S. 2020. Physical analysis of regionalized flow as an aid in the identification of hydrologically homogeneous regions, Engenharia Agrícola, 40, p.334-343.
  • Walling, D.E. and Fang, D. 2003. Recent trends in the suspended sediment loads of the world's rivers, Global and planetary change, 39.1-2, p.111-126.
  • Walling, D.E. 2006. Human impact on land–ocean sediment transfer by the world's rivers, Geomorphology, 79.3-4, p.192-216.
  • Lamontagne, J.R., Stedinger, J.R., Yu, X., Whealton, C.A. and Xu, Z. 2016. Robust flood frequency analysis: Performance of EMA with multiple Grubbs‐Beck outlier tests, Water Resources Research, 52.4, p.3068-3084.
  • Khazar Water Consulting Engineers Company, 1377. Report on the integration of studies on water resources of the Gorganrood and Qarasu basins, vol. 3.
  • Jamab Consulting Engineers, 1378, Report on Country Water Master Plan, Total and Coastal Watershed, Ministry of Energy, Tehran.
  • Nautiyal, M.D. 1994. Morphometric analysis of a drainage basin using aerial photographs: a case study of Khairkuli Basin, District Dehradun, UP, Journal of the Indian Society of Remote Sensing, 22, p.251-261.
  • Hotelling, H. 1933. Analysis of a complex of statistical variables into principal components, Journal of educational psychology, 24.6, p.417.
  • Zavareh, M., Maggioni, V., and Sokolov, V. 2021. Investigating water quality data using principal component analysis and granger causality, Water, 13.3, p.343.
  • Erunova, M.G., and Yakubailik, O.E. 2023. Methods and technologies for spatial analysis of regional ecosystems based on the watershed approach, Integrated Environmental Assessment and Management, 19.4, p.972-979.
  • McKenna Jr, J.E. 2003. An enhanced cluster analysis program with bootstrap significance testing for ecological community analysis, Environmental Modelling & Software, 18.3, p.205-220.
  • Mohammadi, S.A. and Prasanna, B.M. 2003. Analysis of genetic diversity in crop plants—salient statistical tools and considerations, Crop science, 43.4, p.1235-1248.
  • Vega, M., Pardo, R., Barrado, E. and Debán, L. 1998. Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis, Water research, 32.12., p.3581-3592.
  • Otto, M. 1998. Multivariate methods. Analytical chemistry, 916.
  • Cupak, A. and Michalec, B. 2022. Regionalisation of watersheds with respect to low flow, Journal of Water and Land Development, 55.
  • Ward Jr, J.H. 1963. Hierarchical grouping to optimize an objective function, Journal of the American statistical association, 58.301, p.236-244.
  • Willmott, C.J. and Vernon, M.T. 1980. Solar climates of the conterminous United States: A preliminary investigation, Solar Energy, 24.3, p.295-303.
  • Winkler, J.A. 1985. Regionalization of the diurnal distribution of summertime heavy precipitation. In Preprints, Sixth Conf. on Hydrometeorology, Indianapolis, IN, Amer. Meteor. p. 9-16.
  • Kalkstein, L.S. and Corrigan, P. 1986. A synoptic climatological approach for geographical analysis: assessment of sulfur dioxide concentrations, Annals of the Association of American Geographers, 76.3, p.381-395.
  • Nathan, R.J. and McMahon, T.A. 1990. Identification of homogeneous regions for the purposes of regionalization, Journal of Hydrology, 121.1-4, p.217-238.
  • Adhami, M. 2012. Estimation of suspended sediment load using physical characteristics in Gorganroud and Ghareh-Sou Watersheds. Gorgan University of Agricultural Sciences and Natural Resources. MS Thesis, p125, Gorgan, Iran.
  • Hosking, J.R.,1990. L-moments: analysis and estimation of distributions using linear combinations of order statistics, Journal of the Royal Statistical Society Series B: Statistical Methodology, 52.1, p.105-124.
  • Vogel, R.M. and Fennessey, N.M. 1993. L moment diagrams should replace product moment diagrams, Water resources research, 29.6., p.1745-1752.
  • Hosking, J.R.M. and Wallis, J.R. 1993. Some statistics useful in regional frequency analysis, Water resources research, 29.2., p.271-281.
  • Pandey, G.R. and Nguyen, V.T.V. 1999. A comparative study of regression based methods in regional flood frequency analysis, Journal of Hydrology, 225.1-2, p.92-101.
  • Yu, G., Wright, D.B., Zhu, Z., Smith, C. and Holman, K.D. 2019. Process-based flood frequency analysis in an agricultural watershed exhibiting nonstationary flood seasonality, Hydrology and Earth System Sciences, 23.5, p.2225-2243.
  • Moazzami, M., Feyznia, S. 2016. Regional Analysis of Suspended Sediment (Case Study of Jarhiri River), 4th National Conference on Watershed Science and Engineering of Iran, Watershed Management, Karaj.
There are 53 citations in total.

Details

Primary Language English
Subjects Water Resources Engineering
Journal Section Articles
Authors

Maryam Adhami 0000-0003-1238-9239

Early Pub Date May 14, 2024
Publication Date May 27, 2024
Published in Issue Year 2024

Cite

APA Adhami, M. (2024). Regional Flood Frequency Analysis of Northern Iran. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 26(77), 272-280. https://doi.org/10.21205/deufmd.2024267711
AMA Adhami M. Regional Flood Frequency Analysis of Northern Iran. DEUFMD. May 2024;26(77):272-280. doi:10.21205/deufmd.2024267711
Chicago Adhami, Maryam. “Regional Flood Frequency Analysis of Northern Iran”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 26, no. 77 (May 2024): 272-80. https://doi.org/10.21205/deufmd.2024267711.
EndNote Adhami M (May 1, 2024) Regional Flood Frequency Analysis of Northern Iran. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26 77 272–280.
IEEE M. Adhami, “Regional Flood Frequency Analysis of Northern Iran”, DEUFMD, vol. 26, no. 77, pp. 272–280, 2024, doi: 10.21205/deufmd.2024267711.
ISNAD Adhami, Maryam. “Regional Flood Frequency Analysis of Northern Iran”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 26/77 (May 2024), 272-280. https://doi.org/10.21205/deufmd.2024267711.
JAMA Adhami M. Regional Flood Frequency Analysis of Northern Iran. DEUFMD. 2024;26:272–280.
MLA Adhami, Maryam. “Regional Flood Frequency Analysis of Northern Iran”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 26, no. 77, 2024, pp. 272-80, doi:10.21205/deufmd.2024267711.
Vancouver Adhami M. Regional Flood Frequency Analysis of Northern Iran. DEUFMD. 2024;26(77):272-80.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.