Research Article
BibTex RIS Cite

Impacts of Resins Derived from Recycled Polyethylene Terephthalate (PET) on the Flow Characteristics and Density of Polyolefins

Year 2025, Volume: 27 Issue: 80, 181 - 188, 23.05.2025
https://doi.org/10.21205/deufmd.2025278003

Abstract

In this study, waste polyethylene terephthalate (PET) was glycolyzed, and the resulting oligoester polyols were used to synthesize resin. The depolymerization of waste PET was carried out through the reaction with three different glycols (Polypropylene Glycol (PG), Triethylene Glycol (TEG), and Polyethylene Glycol (PEG)) in two different molar ratios (1:2) and (1:10), accompanied by two different catalysts (zinc acetate, zinc sulfate). For the synthesis of the resin, the glycolyzed product and maleic anhydride were mixed in a 1:1 molar ratio, and then, cobalt octoate and methyl ethyl ketone peroxide (MEKPO) were added to this mixture. The synthesized resin was evaluated as a filler in thermoplastic polymers, particularly in various proportions of polyolefins, a significant group of thermoplastics. "Low-density polyethylene (LDPE), high-density polyethylene (HDPE), and polypropylene (PP), which are also important commercial thermoplastics, were added to resin in different proportions to obtain a filler material. The mass flow index and density analyses of the obtained filler materials were conducted. It was found that the developed filler material improved the mass fluidity of all three thermoplastics, particularly HDPE and PP.

References

  • [1] Pimpan, V., Sirisook, R., ve Chuayjuljit, S., 2003. Synthesis of unsaturated polyester resin from postconsumer PET bottles: Effect of type of glycol on characteristics of unsaturated polyester resin. Journal of Applied Polymer Science, Cilt.88(3), s.788–792. DOI: 10.1002/app.11567.
  • [2] Pehlivan, B., Erol, Ünal, S., ve Tunçsiper, 2004. Plastik ambalaj malzemelerinin hayatımızdaki yeri ve bunların geri kazanılması ve azaltılmasında çağdaş yöntemler. Polimer İşleme ve Geri Kazanımı Sempozyumu, s.114–128.
  • [3] Nikles, D. E., ve Farahat, M. S., 2005. New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: A review. Macromolecular Materials and Engineering, Cilt.290(1), s.13–30. DOI: 10.1002/mame.200400186.
  • [4] Tayyar, A. E., ve Üstün, S., 2010. Geri kazanılmış PET’in kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt.16(1), s.53-62.
  • [5] Lüy, E., Varıca, K. B., ve Kemirtlek, A., 2007. Katı atık geri kazanım çalışmaları; İstanbul örneği.
  • [6] Leng, Z., Padhan, R. K., ve Sreeram, A., 2018. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of Cleaner Production, Cilt.180, s.682–688. DOI: 10.1016/j.jclepro.2018.01.171.
  • [7] Panda, A. K., Singh, R. K., ve Mishra, D. K., 2010. Thermolysis of waste plastics to liquid fuel. Renewable and Sustainable Energy Reviews, Cilt.14(1), s.233–248. DOI: 10.1016/j.rser.2009.07.005.
  • [8] Cevher, D., ve Sürdem, S., 2021. Polyurethane adhesive based on polyol monomers BHET and BHETA depolymerised from PET waste. International Journal of Adhesion and Adhesives, Cilt.105, s.102799. DOI: 10.1016/j.ijadhadh.2020.102799.
  • [9] Njuguna, J. K., Muchiri, P., Karuri, N. W., Herzog, M., Dimitrov, K., ve Mwema, F. M., 2021. Determination of thermo-mechanical properties of recycled polyurethane from glycolysis polyol. Scientific African, Cilt.12, DOI: 10.1016/j.sciaf.2021.e00755.
  • [10] Pingale, N. D., Palekar, V. S., ve Shukla, S. R., 2009. Glycolysis of postconsumer polyethylene terephthalate waste. Journal of Applied Polymer Science, Cilt.1(115), s.249-254. DOI: 10.1002/app.31092.
  • [11] Abdelaal, M. Y., Sobahi, T. R., ve Makki, M. S. I., 2011. Chemical transformation of PET waste through glycolysis. Construction and Building Materials, Cilt.25(8), s.3267–3271. DOI: 10.1016/j.conbuildmat.2011.03.013.
  • [12] Yang, H., Yan, Y., Zhu, P., Li, H., Zhu, Q., ve Fan, C., 2005. Studies on the viscosity behavior of polymer solutions at low concentrations. European Polymer Journal, Cilt.41, s.329–340. DOI: 10.1016/j.eurpolymj.2004.10.002.
  • [13] Holden, G., 2024. Thermoplastic Elastomers. Applied Plastics Engineering Handbook (Third Edition), Myer Kutz (Ed.), Plastics Design Library, s.97-113.
  • [14] Westover, C. C., ve Long, T. E., 2023. Envisioning a BHET economy: Adding value to PET waste. Sustainable Chemistry, Cilt.4, s.363–393. DOI: 10.3390/suschem4040025.
  • [15] Choe, Y.-A., Pak, R.-B., Kim, S.-I., ve Ju, K.-S., 2023. Preparation and characterization of water-reducible polyester resin based on waste PET for insulation varnish. RSC Advances, Cilt.13(49), s.34637-34645. DOI: 10.1039/D3RA06369K.
  • [16] Çavuşoğlu, F. C., ve Acar, I., 2023. Synthesis of PET-based urethane-modified alkyd resins from depolymerization intermediates of post-consumer PET bottles: coating properties and thermal behaviors. Journal of Coatings Technology and Research, Cilt.20, s.741–761. DOI: 10.1007/s11998-022-00705-y.
  • [17] Erol, T., Özaltun, D. H., Çavuşoğlu, F. C., Acar, I., ve Güçlü, G., 2024. The effect of linseed oil/canola oil blend on the coating and thermal properties of waste PET-based alkyd resins. An Acad Bras Cienc., Cilt.96(1), e20230859. DOI: 10.1590/0001-3765202420230859.
  • [18] Jamdar, V., Kathalewar, M., Sane, D., ve Sabnis, A., 2024. Chemical recycling of PET waste and utilization of recycled product for synthesis of hybrid unsaturated polyester – urethane coatings. DOI: 10.21203/rs.3.rs-4226291/v1.
  • [19] Fırat, T., ve Kar, F., 2023. Evaluation of waste polyethylene terephalate in polyol and polyurethane production. Plastics, Rubber and Composites, Cilt.52(8), s.470-48. DOI: 10.1080/14658011.2023.2238337.
  • [20] Guerreiro, S. D., João, I. M., ve Real, L. P., 2012. Evaluation of the influence of testing parameters on the melt flow index of thermoplastics. Polymer Testing, Cilt.31, s.1026–1030. DOI: 10.1016/j.polymertesting.2012.07.008.
  • [21] Kısmet, Y., 2015. Hidrolize edilmiş elektrostatik toz boya atık miktarına bağlı olarak poliamid (PA6) ve polioksimetilenin (POM) eriyik akış indeksleri ve yoğunluklarındaki değişimin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt.22(4), s.241-245.
  • [22] Kısmet, Y., 2015. Effects of hydrolyzed electrostatic powder coating wastes on fluidity and density of polyolefins. Sigma Journal of Engineering and Natural Sciences, Cilt.33(3), s.377–383.

Atık Polietilenteraftalat (PET) Geri Dönüşümünden Elde Edilen Glikolize Ürünler ile Sentezlenen Reçinelerin Poliolefinlerin Akışkanlığı ve Yoğunluğuna Etkileri

Year 2025, Volume: 27 Issue: 80, 181 - 188, 23.05.2025
https://doi.org/10.21205/deufmd.2025278003

Abstract

Yapılan bu çalışmada, atık polietilen tereftalat (PET) glikolize edildi ve elde edilen oligoester poliollerden reçine sentezlendi. Atık PET’ in depolimerizasyonu, üç faklı glikol (Polipropilen Glikol (PG), Trietilen Glikol (TEG) ve Polietilen Glikol (PEG)) (1:2) ve (1:10) molar oranlarında iki farklı katalizör (çinko asetat, çinko sülfat) eşliğinde gerçekleştirildi. Reçine sentezi için öncelikle, glikolize ürün ve maleik anhidrit (1:1) molar oranınında karıştırıldı ve daha sonra bu karışıma, kobalt oktoat ve metil etil keton peroksit (MEKPO) eklendi. Sentezlenen reçine farklı oranlarda alınarak termoplastik polimerlerin önemli bir grubu olan poliolefinlerde dolgu maddesi olarak değerlendirildi. Aynı zamanda önemli birer ticari termoplastik olan alçak yoğunluklu polietilen (AYPE), yüksek yoğunluklu polietilen (YYPE), polipropilen (PP) reçineye farklı oranlarda eklenerek dolgu maddesi elde edildi. Elde edilen dolgu maddelerinin kütlesel akış indeksi ve yoğunluk analizleri gerçekleştirildi. Geliştirilen dolgu maddesinin özellikle YYPE ve PP başta olmak üzere her üç termoplastiğinde kütlesel akışkanlığını iyileştirdiği tespit edildi.

References

  • [1] Pimpan, V., Sirisook, R., ve Chuayjuljit, S., 2003. Synthesis of unsaturated polyester resin from postconsumer PET bottles: Effect of type of glycol on characteristics of unsaturated polyester resin. Journal of Applied Polymer Science, Cilt.88(3), s.788–792. DOI: 10.1002/app.11567.
  • [2] Pehlivan, B., Erol, Ünal, S., ve Tunçsiper, 2004. Plastik ambalaj malzemelerinin hayatımızdaki yeri ve bunların geri kazanılması ve azaltılmasında çağdaş yöntemler. Polimer İşleme ve Geri Kazanımı Sempozyumu, s.114–128.
  • [3] Nikles, D. E., ve Farahat, M. S., 2005. New motivation for the depolymerization products derived from poly(ethylene terephthalate) (PET) waste: A review. Macromolecular Materials and Engineering, Cilt.290(1), s.13–30. DOI: 10.1002/mame.200400186.
  • [4] Tayyar, A. E., ve Üstün, S., 2010. Geri kazanılmış PET’in kullanımı. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt.16(1), s.53-62.
  • [5] Lüy, E., Varıca, K. B., ve Kemirtlek, A., 2007. Katı atık geri kazanım çalışmaları; İstanbul örneği.
  • [6] Leng, Z., Padhan, R. K., ve Sreeram, A., 2018. Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt. Journal of Cleaner Production, Cilt.180, s.682–688. DOI: 10.1016/j.jclepro.2018.01.171.
  • [7] Panda, A. K., Singh, R. K., ve Mishra, D. K., 2010. Thermolysis of waste plastics to liquid fuel. Renewable and Sustainable Energy Reviews, Cilt.14(1), s.233–248. DOI: 10.1016/j.rser.2009.07.005.
  • [8] Cevher, D., ve Sürdem, S., 2021. Polyurethane adhesive based on polyol monomers BHET and BHETA depolymerised from PET waste. International Journal of Adhesion and Adhesives, Cilt.105, s.102799. DOI: 10.1016/j.ijadhadh.2020.102799.
  • [9] Njuguna, J. K., Muchiri, P., Karuri, N. W., Herzog, M., Dimitrov, K., ve Mwema, F. M., 2021. Determination of thermo-mechanical properties of recycled polyurethane from glycolysis polyol. Scientific African, Cilt.12, DOI: 10.1016/j.sciaf.2021.e00755.
  • [10] Pingale, N. D., Palekar, V. S., ve Shukla, S. R., 2009. Glycolysis of postconsumer polyethylene terephthalate waste. Journal of Applied Polymer Science, Cilt.1(115), s.249-254. DOI: 10.1002/app.31092.
  • [11] Abdelaal, M. Y., Sobahi, T. R., ve Makki, M. S. I., 2011. Chemical transformation of PET waste through glycolysis. Construction and Building Materials, Cilt.25(8), s.3267–3271. DOI: 10.1016/j.conbuildmat.2011.03.013.
  • [12] Yang, H., Yan, Y., Zhu, P., Li, H., Zhu, Q., ve Fan, C., 2005. Studies on the viscosity behavior of polymer solutions at low concentrations. European Polymer Journal, Cilt.41, s.329–340. DOI: 10.1016/j.eurpolymj.2004.10.002.
  • [13] Holden, G., 2024. Thermoplastic Elastomers. Applied Plastics Engineering Handbook (Third Edition), Myer Kutz (Ed.), Plastics Design Library, s.97-113.
  • [14] Westover, C. C., ve Long, T. E., 2023. Envisioning a BHET economy: Adding value to PET waste. Sustainable Chemistry, Cilt.4, s.363–393. DOI: 10.3390/suschem4040025.
  • [15] Choe, Y.-A., Pak, R.-B., Kim, S.-I., ve Ju, K.-S., 2023. Preparation and characterization of water-reducible polyester resin based on waste PET for insulation varnish. RSC Advances, Cilt.13(49), s.34637-34645. DOI: 10.1039/D3RA06369K.
  • [16] Çavuşoğlu, F. C., ve Acar, I., 2023. Synthesis of PET-based urethane-modified alkyd resins from depolymerization intermediates of post-consumer PET bottles: coating properties and thermal behaviors. Journal of Coatings Technology and Research, Cilt.20, s.741–761. DOI: 10.1007/s11998-022-00705-y.
  • [17] Erol, T., Özaltun, D. H., Çavuşoğlu, F. C., Acar, I., ve Güçlü, G., 2024. The effect of linseed oil/canola oil blend on the coating and thermal properties of waste PET-based alkyd resins. An Acad Bras Cienc., Cilt.96(1), e20230859. DOI: 10.1590/0001-3765202420230859.
  • [18] Jamdar, V., Kathalewar, M., Sane, D., ve Sabnis, A., 2024. Chemical recycling of PET waste and utilization of recycled product for synthesis of hybrid unsaturated polyester – urethane coatings. DOI: 10.21203/rs.3.rs-4226291/v1.
  • [19] Fırat, T., ve Kar, F., 2023. Evaluation of waste polyethylene terephalate in polyol and polyurethane production. Plastics, Rubber and Composites, Cilt.52(8), s.470-48. DOI: 10.1080/14658011.2023.2238337.
  • [20] Guerreiro, S. D., João, I. M., ve Real, L. P., 2012. Evaluation of the influence of testing parameters on the melt flow index of thermoplastics. Polymer Testing, Cilt.31, s.1026–1030. DOI: 10.1016/j.polymertesting.2012.07.008.
  • [21] Kısmet, Y., 2015. Hidrolize edilmiş elektrostatik toz boya atık miktarına bağlı olarak poliamid (PA6) ve polioksimetilenin (POM) eriyik akış indeksleri ve yoğunluklarındaki değişimin incelenmesi. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, Cilt.22(4), s.241-245.
  • [22] Kısmet, Y., 2015. Effects of hydrolyzed electrostatic powder coating wastes on fluidity and density of polyolefins. Sigma Journal of Engineering and Natural Sciences, Cilt.33(3), s.377–383.
There are 22 citations in total.

Details

Primary Language Turkish
Subjects Polymer Science and Technologies
Journal Section Research Article
Authors

Tülay Fırat 0000-0002-0179-3204

Yılmaz Kısmet 0000-0003-3145-6214

Submission Date February 23, 2024
Acceptance Date July 29, 2024
Early Pub Date May 12, 2025
Publication Date May 23, 2025
Published in Issue Year 2025 Volume: 27 Issue: 80

Cite

Vancouver Fırat T, Kısmet Y. Atık Polietilenteraftalat (PET) Geri Dönüşümünden Elde Edilen Glikolize Ürünler ile Sentezlenen Reçinelerin Poliolefinlerin Akışkanlığı ve Yoğunluğuna Etkileri. DEUFMD. 2025;27(80):181-8.

This journal is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License (CC BY-NC 4.0).

download?token=eyJhdXRoX3JvbGVzIjpbXSwiZW5kcG9pbnQiOiJmaWxlIiwicGF0aCI6IjliNTAvMDBjMi8xZmIxLzY5MjZmZDIyOGE1NzgyLjA3MzU5MTk2LnBuZyIsImV4cCI6MTc2NDE2OTMzMSwibm9uY2UiOiI2MTU1ODg1NGZlYzhkZTA1OThkNTU2NGFmYTQzYTc0YiJ9.O5b4Ex8bMlFv5797LL8VnE9YWS_X5880dfbmOp2-kc8