Research Article
BibTex RIS Cite

Synthesis Optimization and Inhibition Effects of Bismuth-BAL Chelate on Escherichia coli, Streptococcus pyogenes, and Activated Sludge

Year 2019, , 499 - 508, 21.05.2019
https://doi.org/10.21205/deufmd.2019216215

Abstract

With the development of technology
and engineering, different highly qualified products can be manufactured and
used with a wide range. This highly qualified micro- and nano-technological
materials can be easily covered with bacteria colonies and biofilms.
Researchers have tried to synthesize different anti-bacterial chemicals to
solve this problem. The formation of biofilm on the surface and in the pores,
which is caused by the extracellular polymeric substances (EPS) and soluble
microbial products (SMP), has long been identified as a problem for engineering
applications. The total polysaccharides and proteins secreted by microorganisms
can be decreased when exposed to the synthesized bismuth-BAL chelate (BisBAL).
Our proposal is to inhibit the EPS and SMP from Escherichia coli and Streptococcus
pyogenes
. The anti-bacterial properties of synthesized chemicals that have
several combinations of bismuth metal with lipophilic thiol compound were
examined to get the optimum inhibitor. The application strategies and stability
of BisBAL were also studied. The chelate can be used as a compound of membranes
used in membrane bioreactors, which will be an obligation of advanced
wastewater treatment with the aims of the protection of natural water sources’
quality and supply the water demand, to prevent the biofouling. 

References

  • [1] Padaki, M., Murali, R. S., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A. & Ismail, A. F. 2015. Membrane technology enhancement in oil–water separation. A review. Desalination, 357, s. 197-207.
  • [2] Fazal, S., Zhang, B., Zhong, Z., Gao, L., Chen, X. 2015. Industrial wastewater treatment by using MBR (membrane bioreactor) review study. Journal of Environmental Protection, 6(06), s. 584.
  • [3] Lee, S. H., Hong, T. I., Kim, B., Hong, S., Park, H. D. 2014. Comparison of bacterial communities of biofilms formed on different membrane surfaces. World Journal of Microbiology and Biotechnology, 30(2), s. 777-782.
  • [4] Luo, J., Lv, P., Zhang, J., Fane, A. G., McDougald, D., Rice, S. A. 2017. Succession of biofilm communities responsible for biofouling of membrane bio-reactors (MBRs). PloS one, 12(7), e0179855.
  • [5] Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., Galdiero, M. 2015. Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), s. 8856-8874.
  • [6] Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., Sharghi, H. 2015. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. Journal of Nanomaterials, 16(1), s. 53.
  • [7] Gurunathan, S., Han, J. W., Kwon, D. N., Kim, J. H. 2014. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale research letters, 9(1), s. 373.
  • [8] Lee, W., Kim, K. J., Lee, D. G. 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals, 27(6), s. 1191-1201.[9] Priyadarshini, E., Pradhan, N., Sukla, L. B., Panda, P. K. 2014. Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against Gram negative pathogenic bacteria. Journal of Nanotechnology, 2014.
  • [10] Suganya, K. U., Govindaraju, K., Kumar, V. G., Dhas, T. S., Karthick, V., Singaravelu, G., Elanchezhiyan, M. 2015. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Materials Science and Engineering: C, 47, s. 351-356.
  • [11] Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Mohamad, D. 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), s. 219-242.
  • [12] Meghana, S., Kabra, P., Chakraborty, S., Padmavathy, N. 2015. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC advances, 5(16), s. 12293-12299.
  • [13] Besinis, A., Hadi, S. D., Le, H. R., Tredwin, C., Handy, R. D. 2017. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology, 11(3), s. 327-338.
  • [14] Verma, P. 2015. A Review on Synthesis and Their Antibacterial Activity of Silver and Selenium Nanoparticles against Biofilm Forming Staphylococcus Aureus. World J. Pharm Pharmaceut. Sci, 4, s. 652-677.
  • [15] Stolzoff, M., Wang, S. Q., Webster, T. J. 2016. Efficacy and mechanism of selenium nanoparticles as antibacterial agents. In Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. s. 3040.
  • [16] Barton, L. L., Lyle, D. A., Ritz, N. L., Granat, A. S., Khurshid, A. N., Kherbik, N., Lin, H. C. 2016. Bismuth (III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774. BioMetals, 29(2), s. 311-319.
  • [17] Flores-Castañeda, M., Vega-Jiménez, A. L., Almaguer-Flores, A., Camps, E., Pérez, M., Silva-Bermudez, P., Rodil, S. E. 2015. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation. Journal of Nanoparticle Research, 17(11), s. 431.
  • [18] Hernandez-Delgadillo, R., Del Angel-Mosqueda, C., Solís-Soto, J. M., Munguia-Moreno, S., Pineda-Aguilar, N., Sánchez-Nájera, R. I., Cabral-Romero, C. 2017. Antimicrobial and antibiofilm activities of MTA supplemented with bismuth lipophilic nanoparticles. Dental Materials Journal, 36(4), s. 503-510.
  • [19] Mahdiun, F., Mansouri, S., Khazaeli, P., Mirzaei, R. 2017. The effect of tobramycin incorporated with bismuth-ethanedithiol loaded on niosomes on the quorum sensing and biofilm formation of Pseudomonas aeruginosa. Microbial pathogenesis, 107, s. 129-135.
  • [20] Li, M., Bradley, J. C., Badireddy, A. R., Lu, H. 2017. Ultrafiltration membranes functionalized with lipophilic bismuth dimercaptopropanol nanoparticles: Anti-fouling behavior and mechanisms. Chemical Engineering Journal, 313, s. 293-300.
  • [21] Badireddy, A. R., Hernandez-Delgadillo, R., Sánchez-Nájera, R. I., Chellam, S., Cabral-Romero, C. 2014. Synthesis and characterization of lipophilic bismuth dimercaptopropanol nanoparticles and their effects on oral microorganisms growth and biofilm formation. Journal of Nanoparticle Research, 16(6), s. 2456.
  • [22] Varposhti, M., Ali, A. A., Mohammadi, P. 2014. Synergistic effects of Bismuth Thiols and various antibiotics against Pseudomonas aeruginosa biofilm. Jundishapur Journal of Microbiology, 7(3).
  • [23] Badireddy A. R., Chellam S., Yanina S., Gassman P., Rosso K. M. 2008. BisBAL inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta Implications for membrane microfiltration. Biotechnology and Bioengineering, 99(3).
  • [24] Ovez S., Turken T., Kose-Mutlu B., Okatan S., Durmaz G., Guclu M. C., Koyuncu I. 2016. Manufacturing of antibiofouling polymeric membranes with bismuth-BAL chelate (BisBAL). Desalination and Water Treatment, 57(28), s. 12941-12955.

Bizmut-BAL Şelatı Sentezinin Optimizasyonu ve Escherichia coli, Streptococcus pyogenes ve Aktif Çamur Üzerindeki İnhibisyon Etkisi

Year 2019, , 499 - 508, 21.05.2019
https://doi.org/10.21205/deufmd.2019216215

Abstract

Teknoloji
ve mühendisliğin gelişmesi ile beraber yüksek kalitede pek çok ürünün üretimi
ve geniş kullanım alanlarında yeralması mümkün olmaktadır. Bu yüksek kalitedeki
mikro- ve nano-teknolojik malzemeler bakteri kolonileri ve biyofilm tabakaları
tarafından kolayca sarılmaktadırlar. Araştırmacılar, bu probleme çözüm
bulabilmek adına pek çok farklı antibakteriyel kimyasal sentezlemişlerdir. Uzun
bir süredir, hücredışı polimerik maddeler (EPS) ve çözünen mikrobiyal ürünler
(SMP) sebebiyle porlarda ve yüzeylerde gerçekleşen biyofilm oluşumu mühendislik
uygulamalarının bir problemi olarak gösterilmektedir. Mikroorganizmalar
sentezlenen bizmut-BAL şelatı (Bis-BAL) na maruz kaldığında toplam
polisakkaritleri ve proteinleri daha az salgılarlar. Bu çalışmada Escherichia coli ve Streptococcus pyogenes tarafından salgılanacak EPS ve SMP’nin
engellenmesi öngörülmüştür. Bizmut metali ve lipofilik tiyolün çeşitli
konsantrasyonlarının kombinasyonlar halinde denenmesi ile sentezlenen
kimyasallar arasından en yüksek inhibisyon etkisini gönderenin belirlenmesi
amaçlanmıştır. BisBAL’ın uygulanmasıda izlenebilecek stratejiler ve stabilitesi
de çalışılmıştır. İlgili şelat membran biyoreaktörlerde kullanılacak olan
membranların bünyesine ilave edilebilir ve böylelikle doğal su kaynaklarının
kalitesinin korunarak su ihtiyacının karşılanmasında tercih edilen membran
teknolojisinde biyotıkanmanın önüne geçilebilir.

References

  • [1] Padaki, M., Murali, R. S., Abdullah, M. S., Misdan, N., Moslehyani, A., Kassim, M. A. & Ismail, A. F. 2015. Membrane technology enhancement in oil–water separation. A review. Desalination, 357, s. 197-207.
  • [2] Fazal, S., Zhang, B., Zhong, Z., Gao, L., Chen, X. 2015. Industrial wastewater treatment by using MBR (membrane bioreactor) review study. Journal of Environmental Protection, 6(06), s. 584.
  • [3] Lee, S. H., Hong, T. I., Kim, B., Hong, S., Park, H. D. 2014. Comparison of bacterial communities of biofilms formed on different membrane surfaces. World Journal of Microbiology and Biotechnology, 30(2), s. 777-782.
  • [4] Luo, J., Lv, P., Zhang, J., Fane, A. G., McDougald, D., Rice, S. A. 2017. Succession of biofilm communities responsible for biofouling of membrane bio-reactors (MBRs). PloS one, 12(7), e0179855.
  • [5] Franci, G., Falanga, A., Galdiero, S., Palomba, L., Rai, M., Morelli, G., Galdiero, M. 2015. Silver nanoparticles as potential antibacterial agents. Molecules, 20(5), s. 8856-8874.
  • [6] Abbaszadegan, A., Ghahramani, Y., Gholami, A., Hemmateenejad, B., Dorostkar, S., Nabavizadeh, M., Sharghi, H. 2015. The effect of charge at the surface of silver nanoparticles on antimicrobial activity against gram-positive and gram-negative bacteria: a preliminary study. Journal of Nanomaterials, 16(1), s. 53.
  • [7] Gurunathan, S., Han, J. W., Kwon, D. N., Kim, J. H. 2014. Enhanced antibacterial and anti-biofilm activities of silver nanoparticles against Gram-negative and Gram-positive bacteria. Nanoscale research letters, 9(1), s. 373.
  • [8] Lee, W., Kim, K. J., Lee, D. G. 2014. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals, 27(6), s. 1191-1201.[9] Priyadarshini, E., Pradhan, N., Sukla, L. B., Panda, P. K. 2014. Controlled synthesis of gold nanoparticles using Aspergillus terreus IF0 and its antibacterial potential against Gram negative pathogenic bacteria. Journal of Nanotechnology, 2014.
  • [10] Suganya, K. U., Govindaraju, K., Kumar, V. G., Dhas, T. S., Karthick, V., Singaravelu, G., Elanchezhiyan, M. 2015. Blue green alga mediated synthesis of gold nanoparticles and its antibacterial efficacy against Gram positive organisms. Materials Science and Engineering: C, 47, s. 351-356.
  • [11] Sirelkhatim, A., Mahmud, S., Seeni, A., Kaus, N. H. M., Ann, L. C., Bakhori, S. K. M., Mohamad, D. 2015. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Letters, 7(3), s. 219-242.
  • [12] Meghana, S., Kabra, P., Chakraborty, S., Padmavathy, N. 2015. Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC advances, 5(16), s. 12293-12299.
  • [13] Besinis, A., Hadi, S. D., Le, H. R., Tredwin, C., Handy, R. D. 2017. Antibacterial activity and biofilm inhibition by surface modified titanium alloy medical implants following application of silver, titanium dioxide and hydroxyapatite nanocoatings. Nanotoxicology, 11(3), s. 327-338.
  • [14] Verma, P. 2015. A Review on Synthesis and Their Antibacterial Activity of Silver and Selenium Nanoparticles against Biofilm Forming Staphylococcus Aureus. World J. Pharm Pharmaceut. Sci, 4, s. 652-677.
  • [15] Stolzoff, M., Wang, S. Q., Webster, T. J. 2016. Efficacy and mechanism of selenium nanoparticles as antibacterial agents. In Front. Bioeng. Biotechnol. Conference Abstract: 10th World Biomaterials Congress. s. 3040.
  • [16] Barton, L. L., Lyle, D. A., Ritz, N. L., Granat, A. S., Khurshid, A. N., Kherbik, N., Lin, H. C. 2016. Bismuth (III) deferiprone effectively inhibits growth of Desulfovibrio desulfuricans ATCC 27774. BioMetals, 29(2), s. 311-319.
  • [17] Flores-Castañeda, M., Vega-Jiménez, A. L., Almaguer-Flores, A., Camps, E., Pérez, M., Silva-Bermudez, P., Rodil, S. E. 2015. Antibacterial effect of bismuth subsalicylate nanoparticles synthesized by laser ablation. Journal of Nanoparticle Research, 17(11), s. 431.
  • [18] Hernandez-Delgadillo, R., Del Angel-Mosqueda, C., Solís-Soto, J. M., Munguia-Moreno, S., Pineda-Aguilar, N., Sánchez-Nájera, R. I., Cabral-Romero, C. 2017. Antimicrobial and antibiofilm activities of MTA supplemented with bismuth lipophilic nanoparticles. Dental Materials Journal, 36(4), s. 503-510.
  • [19] Mahdiun, F., Mansouri, S., Khazaeli, P., Mirzaei, R. 2017. The effect of tobramycin incorporated with bismuth-ethanedithiol loaded on niosomes on the quorum sensing and biofilm formation of Pseudomonas aeruginosa. Microbial pathogenesis, 107, s. 129-135.
  • [20] Li, M., Bradley, J. C., Badireddy, A. R., Lu, H. 2017. Ultrafiltration membranes functionalized with lipophilic bismuth dimercaptopropanol nanoparticles: Anti-fouling behavior and mechanisms. Chemical Engineering Journal, 313, s. 293-300.
  • [21] Badireddy, A. R., Hernandez-Delgadillo, R., Sánchez-Nájera, R. I., Chellam, S., Cabral-Romero, C. 2014. Synthesis and characterization of lipophilic bismuth dimercaptopropanol nanoparticles and their effects on oral microorganisms growth and biofilm formation. Journal of Nanoparticle Research, 16(6), s. 2456.
  • [22] Varposhti, M., Ali, A. A., Mohammadi, P. 2014. Synergistic effects of Bismuth Thiols and various antibiotics against Pseudomonas aeruginosa biofilm. Jundishapur Journal of Microbiology, 7(3).
  • [23] Badireddy A. R., Chellam S., Yanina S., Gassman P., Rosso K. M. 2008. BisBAL inhibits the expression of extracellular polysaccharides and proteins by Brevundimonas diminuta Implications for membrane microfiltration. Biotechnology and Bioengineering, 99(3).
  • [24] Ovez S., Turken T., Kose-Mutlu B., Okatan S., Durmaz G., Guclu M. C., Koyuncu I. 2016. Manufacturing of antibiofouling polymeric membranes with bismuth-BAL chelate (BisBAL). Desalination and Water Treatment, 57(28), s. 12941-12955.
There are 23 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Börte Köse Mutlu 0000-0001-9747-5499

Türker Türken 0000-0003-0550-5975

Selin Okatan This is me 0000-0003-0300-2549

Gamze Durmaz This is me 0000-0002-6611-7661

Gülsüm Melike Ürper Bayram This is me 0000-0003-0313-6467

Serkan Güçlü This is me 0000-0003-1027-0410

Süleyman Övez 0000-0001-8189-6416

İsmail Koyuncu 0000-0001-8354-1889

Publication Date May 21, 2019
Published in Issue Year 2019

Cite

APA Köse Mutlu, B., Türken, T., Okatan, S., Durmaz, G., et al. (2019). Bizmut-BAL Şelatı Sentezinin Optimizasyonu ve Escherichia coli, Streptococcus pyogenes ve Aktif Çamur Üzerindeki İnhibisyon Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(62), 499-508. https://doi.org/10.21205/deufmd.2019216215
AMA Köse Mutlu B, Türken T, Okatan S, Durmaz G, Ürper Bayram GM, Güçlü S, Övez S, Koyuncu İ. Bizmut-BAL Şelatı Sentezinin Optimizasyonu ve Escherichia coli, Streptococcus pyogenes ve Aktif Çamur Üzerindeki İnhibisyon Etkisi. DEUFMD. May 2019;21(62):499-508. doi:10.21205/deufmd.2019216215
Chicago Köse Mutlu, Börte, Türker Türken, Selin Okatan, Gamze Durmaz, Gülsüm Melike Ürper Bayram, Serkan Güçlü, Süleyman Övez, and İsmail Koyuncu. “Bizmut-BAL Şelatı Sentezinin Optimizasyonu Ve Escherichia Coli, Streptococcus Pyogenes Ve Aktif Çamur Üzerindeki İnhibisyon Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, no. 62 (May 2019): 499-508. https://doi.org/10.21205/deufmd.2019216215.
EndNote Köse Mutlu B, Türken T, Okatan S, Durmaz G, Ürper Bayram GM, Güçlü S, Övez S, Koyuncu İ (May 1, 2019) Bizmut-BAL Şelatı Sentezinin Optimizasyonu ve Escherichia coli, Streptococcus pyogenes ve Aktif Çamur Üzerindeki İnhibisyon Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 62 499–508.
IEEE B. Köse Mutlu, T. Türken, S. Okatan, G. Durmaz, G. M. Ürper Bayram, S. Güçlü, S. Övez, and İ. Koyuncu, “Bizmut-BAL Şelatı Sentezinin Optimizasyonu ve Escherichia coli, Streptococcus pyogenes ve Aktif Çamur Üzerindeki İnhibisyon Etkisi”, DEUFMD, vol. 21, no. 62, pp. 499–508, 2019, doi: 10.21205/deufmd.2019216215.
ISNAD Köse Mutlu, Börte et al. “Bizmut-BAL Şelatı Sentezinin Optimizasyonu Ve Escherichia Coli, Streptococcus Pyogenes Ve Aktif Çamur Üzerindeki İnhibisyon Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/62 (May 2019), 499-508. https://doi.org/10.21205/deufmd.2019216215.
JAMA Köse Mutlu B, Türken T, Okatan S, Durmaz G, Ürper Bayram GM, Güçlü S, Övez S, Koyuncu İ. Bizmut-BAL Şelatı Sentezinin Optimizasyonu ve Escherichia coli, Streptococcus pyogenes ve Aktif Çamur Üzerindeki İnhibisyon Etkisi. DEUFMD. 2019;21:499–508.
MLA Köse Mutlu, Börte et al. “Bizmut-BAL Şelatı Sentezinin Optimizasyonu Ve Escherichia Coli, Streptococcus Pyogenes Ve Aktif Çamur Üzerindeki İnhibisyon Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 21, no. 62, 2019, pp. 499-08, doi:10.21205/deufmd.2019216215.
Vancouver Köse Mutlu B, Türken T, Okatan S, Durmaz G, Ürper Bayram GM, Güçlü S, Övez S, Koyuncu İ. Bizmut-BAL Şelatı Sentezinin Optimizasyonu ve Escherichia coli, Streptococcus pyogenes ve Aktif Çamur Üzerindeki İnhibisyon Etkisi. DEUFMD. 2019;21(62):499-508.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.