Research Article
BibTex RIS Cite

Ro-Ro Kargo Gemisi İçin Tanımlanan Kurutuculu Buharlaşmalı Soğutma Sistemlerinin Termodinamik Analizi

Year 2019, , 733 - 740, 20.09.2019
https://doi.org/10.21205/deufmd.2019216305

Abstract




Bu çalışma gemilerde
uygulanabilecek
yeni nem almalı ve
buharlaşmalı soğutma çevrimlerinin, termodinamik analiz sonuçlarını sunmaktadır.
Nem almalı buharlaşmalı soğutma sistemi, enerji
verimliliği ve düşük çevresel etkisi ile karakterize edilir. Bu çalışmada,
gemide mevcut motor tarafından atılan atık ısının bir kısmı kullanılarak, M/V
ASSTAR Trabzon Ro-Ro kargo gemisi için nem almalı ve buharlaşmalı soğutma
sisteminin (DCS)  termodinamik açıdan
kullanılma olasılığı incelenmiştir.
Temel
sistem nem alma cihazı, ısı eşanjörü, dolaylı buharlaştırıcı soğutucudan ve
doğrudan buharlaştırıcı soğutucudan oluşmaktadır. Sistem, çok çeşitli iklim
koşulları için yeterli derecede duyarlı ve gizli soğutma kapasitesi
sağlarken, Ro-Ro kargo gemisi için gerekli dış hava akışından daha fazlasını
kullanımına imkan vermektedir.
Bu çalışmada,
sistem çevrim parametrelerini tanımlamayı ve bunların atık ısıyla çalışan
soğutma sistemlerinin performansı üzerindeki etkilerini araştırmayı
amaçlanmaktadır. F
arklı dönüş hava
debisi kullanımının sistem performansı üzerindeki etkisi de çalışmanın diğer
bir özelliğidir.
Geri dönüş havasının ve dış
havanın karıştırılması için iki yaklaşım tanıtılmıştır; bunlardan biri iki
farklı sirkülasyon çevrimlerinden oluşmakta iken, diğeri ise egzos çevrimi
olmaktadır,  hepsi de ayrı ayrı
incelenmiş ve gösterilmiştir. Atık ısı ile çalışan soğutma çevrimlerinin
maksimum ısıl performans katsayısı (COP), tanıtılan çevrimlerin tamamen
tersinir çevrimler olduğu varsayılarak belirlenmiştir.


 



Anahtar Kelimeler: Nem alıcı, nem alma, dolaylı buharlaşmalı soğutma, ısı
geri kazanımlı IC motor


References

  • [1] Singh, V.D. and Pedersen, E. (2016). A review of waste heat recovery technologies for maritime Application,. Energy Conversion and Management, vol. 111, pp. 315-328. DOİ:10.1016/j.enconman.2015.12.073 0196-8904.
  • [2] La, D., Dai, Y.J., Li, Y., Wang, R.Z. and Ge, T.S. (2010). Technical development of rotary desiccant dehumidification and air conditioning: Areview, Renewable and Sustainable Energy Reviews, vol.14, pp.130-147. DOİ:10.1016/j.rser.2009.07.016.
  • [3] Panaras, G ., Mathioulakis, E., Belessiotis, V. (2011). Solid desiccant air-conditioning systems -design parameters. Energy, vol.36, pp. 2399-2406. DOİ:10.1016/j.energy.2011.01.022.
  • [4] Panaras, G., Mathioulakis, E., Belessiotis, V. and Kyriakis, N. (2010). Theoretical and experimental investigation of the performance of a desiccant air-conditioning system, Renewable energy, vol.35, Issue. 7, pp. 1368-1375. DOI: 10.1016/j.renene.2009.11.011.
  • [5] Napoleon, E. and Kunio, M. (2011). The role of the thermally activated desiccant cooling technologies in the issue of energy and environment. Renewable Sustainable Energy Reviews, vol.15, Issue. 4, pp. 2095-2122. DOI: 10.1016/j.rser.2011.01.013.
  • [6] Caliskan, H. Dincer, I. and Hepbasli, A. (2012). Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler. Energy and Buildings, vol.55, 747-756. DOI: 10.1016/j.enbuild.2012.03.024.
  • [7] Jalalzadeh-Azar, A.A., Slayzak, S. and Judkof, R. (2005). Performance assessment of a desiccant cooling system in a CHP application incorporating an IC engine. International Journal of Distributed Energy Resources, vol.1, no.2, pp. 163-184. ISSN 1614-7138.
  • [8] Saraç, B. (2017). Thermodynamic Analysis The Usage of Air Conditioning Systems With Dehumidifier and Evapoartive-Cooling Capabilities in Tea Plants. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering Vol 19, Is. 57, pp. 927-937.
  • [9] Karaca, S. (2015). Determination Of Energy And Exergy Analysis Due To Different Angles Of Propeller Blades Of A Diesel Engine Vessel. Karadeniz Technical University, Trabzon. PhD thesis, Trabzon.
  • [10] Löf, G.O.G, Cler, G. and Brisbane, T. (1988). Performance of a Solar Desiccant Cooling System. Journal of Solar Energy Engineering. Vol. 110, pp. 165-171.
  • [11] Sohani, A., Sayyaadi, H. and Hoseipoori, S. (2016). Modeling and multi-objective optimization of an M-cycle cross-flow indirect evaporative cooler using the GMDH type neural network. Int. Journal of Refrigeration Vol.69, pp.186-204.
  • [12] Charoensupaya, D. and Worek, W.M. (1988). Parametric Study of an Poen-Cycle Adiabatic Solid Desiccant Cooling System. Energy, Vol. 13, No.9, pp.739*747.
  • [13] Koronaki, I.P., Papoutsis, E.G. and V.D. Papaefthimiou, V.D. (2016). Thermodynamic modeling and exergy analysis of a solar adsorption cooling system with cooling tower in Mediterranean conditions. Applied Thermal Engineering. Vol. 99, pp. 1027-1038.
  • [14] Kreider, J.R., and Rabl, A. (1976). Heating and Cooling of Buildings Design For Efficiency. Mc Graw Hill. ISBN 0-07-834776-9.

Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel

Year 2019, , 733 - 740, 20.09.2019
https://doi.org/10.21205/deufmd.2019216305

Abstract

This study presents the results of thermodynamic feasibility of the new desiccant- evaporative- cooling system for an air conditioning application in ships. The desiccant- evaporative- cooling system is characterized by energy efficiency and low environmental impact. In this work, thermodynamic possibility to install desiccant cooling system (DCS) has been studied for a M/V ASSTAR Trabzon Ro-Ro cargo vessel, by using fraction of the heat rejected by existing on-board engine. The baseline system is incorporated a desiccant dehumidifier, a heat exchanger, an indirect evaporative cooler, and a direct evaporative cooler. The system offered sufficient sensible and latent cooling capacities for a wide range of climatic, while allowing in flux of outside air in excess of what is typically required for Ro-Ro cargo vessel. The present work aims at identifying the parameters of the system cycle and investigates their effect on the performance of the waste-heat driven cooling systems. And, the effect of different return air flow rates usage on the system performance is another aspect of the study. Two approaches for mixing of the return air and outside air are introduced; one is consists of  two recirculation cycles, other one is a ventilation cycle, all of them have been examined and demonstrated. The maximum coefficient of performance (COP) of a waste-heat driven cooling cycles were determined by assuming that the cycles are totally reversible.

References

  • [1] Singh, V.D. and Pedersen, E. (2016). A review of waste heat recovery technologies for maritime Application,. Energy Conversion and Management, vol. 111, pp. 315-328. DOİ:10.1016/j.enconman.2015.12.073 0196-8904.
  • [2] La, D., Dai, Y.J., Li, Y., Wang, R.Z. and Ge, T.S. (2010). Technical development of rotary desiccant dehumidification and air conditioning: Areview, Renewable and Sustainable Energy Reviews, vol.14, pp.130-147. DOİ:10.1016/j.rser.2009.07.016.
  • [3] Panaras, G ., Mathioulakis, E., Belessiotis, V. (2011). Solid desiccant air-conditioning systems -design parameters. Energy, vol.36, pp. 2399-2406. DOİ:10.1016/j.energy.2011.01.022.
  • [4] Panaras, G., Mathioulakis, E., Belessiotis, V. and Kyriakis, N. (2010). Theoretical and experimental investigation of the performance of a desiccant air-conditioning system, Renewable energy, vol.35, Issue. 7, pp. 1368-1375. DOI: 10.1016/j.renene.2009.11.011.
  • [5] Napoleon, E. and Kunio, M. (2011). The role of the thermally activated desiccant cooling technologies in the issue of energy and environment. Renewable Sustainable Energy Reviews, vol.15, Issue. 4, pp. 2095-2122. DOI: 10.1016/j.rser.2011.01.013.
  • [6] Caliskan, H. Dincer, I. and Hepbasli, A. (2012). Exergoeconomic, enviroeconomic and sustainability analyses of a novel air cooler. Energy and Buildings, vol.55, 747-756. DOI: 10.1016/j.enbuild.2012.03.024.
  • [7] Jalalzadeh-Azar, A.A., Slayzak, S. and Judkof, R. (2005). Performance assessment of a desiccant cooling system in a CHP application incorporating an IC engine. International Journal of Distributed Energy Resources, vol.1, no.2, pp. 163-184. ISSN 1614-7138.
  • [8] Saraç, B. (2017). Thermodynamic Analysis The Usage of Air Conditioning Systems With Dehumidifier and Evapoartive-Cooling Capabilities in Tea Plants. Dokuz Eylul University-Faculty of Engineering Journal of Science and Engineering Vol 19, Is. 57, pp. 927-937.
  • [9] Karaca, S. (2015). Determination Of Energy And Exergy Analysis Due To Different Angles Of Propeller Blades Of A Diesel Engine Vessel. Karadeniz Technical University, Trabzon. PhD thesis, Trabzon.
  • [10] Löf, G.O.G, Cler, G. and Brisbane, T. (1988). Performance of a Solar Desiccant Cooling System. Journal of Solar Energy Engineering. Vol. 110, pp. 165-171.
  • [11] Sohani, A., Sayyaadi, H. and Hoseipoori, S. (2016). Modeling and multi-objective optimization of an M-cycle cross-flow indirect evaporative cooler using the GMDH type neural network. Int. Journal of Refrigeration Vol.69, pp.186-204.
  • [12] Charoensupaya, D. and Worek, W.M. (1988). Parametric Study of an Poen-Cycle Adiabatic Solid Desiccant Cooling System. Energy, Vol. 13, No.9, pp.739*747.
  • [13] Koronaki, I.P., Papoutsis, E.G. and V.D. Papaefthimiou, V.D. (2016). Thermodynamic modeling and exergy analysis of a solar adsorption cooling system with cooling tower in Mediterranean conditions. Applied Thermal Engineering. Vol. 99, pp. 1027-1038.
  • [14] Kreider, J.R., and Rabl, A. (1976). Heating and Cooling of Buildings Design For Efficiency. Mc Graw Hill. ISBN 0-07-834776-9.
There are 14 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Betül Sarac 0000-0003-3876-7314

Publication Date September 20, 2019
Published in Issue Year 2019

Cite

APA Sarac, B. (2019). Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(63), 733-740. https://doi.org/10.21205/deufmd.2019216305
AMA Sarac B. Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel. DEUFMD. September 2019;21(63):733-740. doi:10.21205/deufmd.2019216305
Chicago Sarac, Betül. “Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, no. 63 (September 2019): 733-40. https://doi.org/10.21205/deufmd.2019216305.
EndNote Sarac B (September 1, 2019) Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 63 733–740.
IEEE B. Sarac, “Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel”, DEUFMD, vol. 21, no. 63, pp. 733–740, 2019, doi: 10.21205/deufmd.2019216305.
ISNAD Sarac, Betül. “Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/63 (September 2019), 733-740. https://doi.org/10.21205/deufmd.2019216305.
JAMA Sarac B. Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel. DEUFMD. 2019;21:733–740.
MLA Sarac, Betül. “Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 21, no. 63, 2019, pp. 733-40, doi:10.21205/deufmd.2019216305.
Vancouver Sarac B. Thermodynamic Analysis Of Desiccant Evaporative Cooling Systems Defined For Ro-Ro Cargo Vessel. DEUFMD. 2019;21(63):733-40.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.