Research Article
BibTex RIS Cite

Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation

Year 2020, , 259 - 269, 24.01.2020
https://doi.org/10.21205/deufmd.2020226425

Abstract

Flow
along a cavity is of special interest for researchers due to the occurrence of
free shear layer flow and related high levels of sound and pressure forces. In
this study, turbulent flow along an open cavity at a low inlet Mach number (Ma
= 0.034) is modelled by Large Eddy Simulations (LES). The velocity profiles at
various stations inside the open cavity are compared to available experimental
data.  It is found that LES results agree
with experimental data and detects the transient pressure change in the flow
field satisfactorily. Transient pressure data in the flow field is evaluated in
acoustic analogy. The noise generated by the cavity is compared with the
established Rossiter modes and is found to be reasonable.  To create an effect on the sound pressure
levels (SPL), a small obstacle with quadrilateral cross section is immersed in
the shear layer at three different locations. This causes that the SPL peaks
are reduced compared to the case without any obstacle.  Thus, cavity-induced noise form specific
frequencies are redistributed to high frequency broadband noise as a result of
this passive flow control method.

References

  • L.N. Cattafesta, Q. Song, D.R. Williams, C.W. Rowley, and F.S. Alvi, " Active control of flow-induced cavity oscillations, Progress in Aerospace Sciences", Vol. 44, pp. 479–502, 2008.
  • F., Cosgun, Aeroacoustics Investigation of Low Mach Number Cavity Flow, Istanbul Technical University, MSc Thesis, Istanbul, 2018.
  • S.D. Crook, T.C.W. Lau, and R.M. Kelso, Three-dimensional flow within shallow, narrow cavities”, Journal of Fluid Mechanics, Vol. 735, pp. 587–612, 2013.
  • N. Curle, “The influence of solid boundaries upon aerodynamic sound”, Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, Vol. 231, pp.505-514, 1955.
  • L.F. East, “Aerodynamically induced resonance in rectangular cavities”, Journal of Sound and Vibration, Vol. 3, pp. 277–287, 1966.
  • J.E. Ffowcs Williams and D. Hawkings,“Sound generation by turbulence and surfacesin arbitrary motion”, Philosophical Transactionsof the Royal Society of London. SeriesA, Mathematical and Physical Sciences, Vol. 264,pp. 321–342, 1969.
  • H.H. Heller and D.B. Bliss, “The Physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression”, AIAA 2nd Aero-Acoustics Conference, Hampton, USA, 1975.
  • L. Larchevêque, P. Sagaut and P. Comte,“Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number”, Journal of Fluid Mechanics, Vol. 516, pp. 265–301, 2004.
  • G. Li, Numerical Simulation of Environmental Flow over Buildings for Renewable Energy Application, MSc Thesis, Arizona State University, Arizona, USA, 2015.
  • M.J. Lighthill, “On sound generated aerodynamically I. General Theory”,Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211, pp. 564-587, 1951.
  • L.V. Lopes, A New Approach to Complete Aircraft Landing Gear Noise Prediction, PhD Thesis, The Pennsylvania State University, Pennsylvania, USA, 2009.
  • L.V. Lopes, “Prediction of landing gear Noise reduction and comparison to measurements”, 16th AIAA/CEAS Aeroacoustics Conference, Hampton, USA, 2010.
  • [13] T. Nouzawa, Y. Li, N. Kasaki, and T. Nakamura, “Mechanism of aerodynamic noise generated from front-pillar and door mirror of automobile”, Journal of Environment and Engineering, Vol. 6, pp. 615–626, 2011.
  • E. Ozsoy, Numerical Simulation of Incompressible Flow Over Three-Dimensional Rectangular Cavity, PhD Thesis, IstanbulTechnical University, Istanbul, Turkey, 2010.
  • J. Rossiter, “Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds”, Aeronautical Research Council Reports and Memoranda, London,England, 1966.
  • V. Sarohia and P.F. Massier, “Control of cavity noise”, Journal of Aircraft, Vol. 14, pp. 833–837, 1977.
  • L.L. Shaw, “Suppression of aerodynamically induced cavity pressure oscillations”, The Journal of the Acoustical Society of America 66, 880, 1979.
  • S. Yamouni, C. Mettot, D. Sipp and L.Jacquin, “Passive control of cavity flows”, Journal of Aerospace Lab, Issue 6, 2013.
  • B. Zafer and F. Cosgun, “Aeroacoustics investigation of incompressible unsteady cavity flow”, Journal of The Faculty of Engineering and Architecture of Gazi University, Vol. 31-3, pp. 665–675, 2016.
  • Fluent Theory Guide, Ansys Inc, 2013.
  • B. Zafer and F. Cosgun, “Aeroacoustics analysis of cavity flow” Journal of Thermal Science and Technology, Vol. 38-2, pp 25-38, 2018.
  • B. Zafer and O. Konan, “Aeroacoustic analysis of cavity – airfoil Interaction”, DokuzEylul University-Faculty of Engineering Journal of Science and Engineering, Vol. 19, Issue 55,January 2017.
  • V. G. Basovsky, I. M. Gorban, O.V.Khomenko, “Modification of hydrodynamic and acoustic fields generated by a cavity with fluid suction”, Modern Mathematics and Mechanics, Chapter 9, pp 137-158, 2018.

Zamana Bağlı Kavite Akışı Aeroakustiğinin Büyük Girdap Simülasyonu ile Sayısal Olarak İncelenmesi

Year 2020, , 259 - 269, 24.01.2020
https://doi.org/10.21205/deufmd.2020226425

Abstract

Bir kavite boyunca akış,
serbest kayma tabakası akışının oluşması ve buna bağlı olarak yüksek
seviyelerde ses ve basınç kuvvetleri nedeniyle araştırmacılar için özel bir
ilgi alanı oluşturmaktadır. Bu çalışmada, düşük Mach sayısındaki (Ma = 0.034)
açık bir kavite boyunca türbülanslı akış Büyük Girdap Simülasyonları (LES) ile
modellenmiştir. Açık kavite içindeki çeşitli konumlardaki hız profilleri,
mevcut deneysel verilerle karşılaştırılmıştır. LES sonuçlarının deneysel
verilerle uyuştuğu ve akış alanındaki zamana bağlı basınç çalkantılarını tatmin
edici şekilde tespit edebildiği bulunmuştur. Akış alanındaki bu basınç verileri
akustik analojide değerlendirilmiştir. Kavitenin ürettiği gürültü, Rossiter
modlarıyla karşılaştırılmış ve makul seviyede bulunmuştur. Ses basıncı
seviyeleri (SPL) üzerinde bir etki yaratmak için, kesme katmanına üç farklı
noktada dörtgen kesitli küçük bir engel daldırılmıştır. Bu, herhangi bir engel
olmadığı duruma kıyasla SPL doruklarının azalmasına neden olmaktadır. Bu
nedenle, kavite kaynaklı gürültüye özgü frekanslar, bu pasif akış kontrol
yönteminin bir sonucu olarak yüksek frekanslı geniş bant gürültüsüne yeniden
dağıtılır.

References

  • L.N. Cattafesta, Q. Song, D.R. Williams, C.W. Rowley, and F.S. Alvi, " Active control of flow-induced cavity oscillations, Progress in Aerospace Sciences", Vol. 44, pp. 479–502, 2008.
  • F., Cosgun, Aeroacoustics Investigation of Low Mach Number Cavity Flow, Istanbul Technical University, MSc Thesis, Istanbul, 2018.
  • S.D. Crook, T.C.W. Lau, and R.M. Kelso, Three-dimensional flow within shallow, narrow cavities”, Journal of Fluid Mechanics, Vol. 735, pp. 587–612, 2013.
  • N. Curle, “The influence of solid boundaries upon aerodynamic sound”, Philosophical Transactions of the Royal Society of London.Series A, Mathematical and Physical Sciences, Vol. 231, pp.505-514, 1955.
  • L.F. East, “Aerodynamically induced resonance in rectangular cavities”, Journal of Sound and Vibration, Vol. 3, pp. 277–287, 1966.
  • J.E. Ffowcs Williams and D. Hawkings,“Sound generation by turbulence and surfacesin arbitrary motion”, Philosophical Transactionsof the Royal Society of London. SeriesA, Mathematical and Physical Sciences, Vol. 264,pp. 321–342, 1969.
  • H.H. Heller and D.B. Bliss, “The Physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression”, AIAA 2nd Aero-Acoustics Conference, Hampton, USA, 1975.
  • L. Larchevêque, P. Sagaut and P. Comte,“Large-eddy simulation of a compressible flow in a three-dimensional open cavity at high Reynolds number”, Journal of Fluid Mechanics, Vol. 516, pp. 265–301, 2004.
  • G. Li, Numerical Simulation of Environmental Flow over Buildings for Renewable Energy Application, MSc Thesis, Arizona State University, Arizona, USA, 2015.
  • M.J. Lighthill, “On sound generated aerodynamically I. General Theory”,Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 211, pp. 564-587, 1951.
  • L.V. Lopes, A New Approach to Complete Aircraft Landing Gear Noise Prediction, PhD Thesis, The Pennsylvania State University, Pennsylvania, USA, 2009.
  • L.V. Lopes, “Prediction of landing gear Noise reduction and comparison to measurements”, 16th AIAA/CEAS Aeroacoustics Conference, Hampton, USA, 2010.
  • [13] T. Nouzawa, Y. Li, N. Kasaki, and T. Nakamura, “Mechanism of aerodynamic noise generated from front-pillar and door mirror of automobile”, Journal of Environment and Engineering, Vol. 6, pp. 615–626, 2011.
  • E. Ozsoy, Numerical Simulation of Incompressible Flow Over Three-Dimensional Rectangular Cavity, PhD Thesis, IstanbulTechnical University, Istanbul, Turkey, 2010.
  • J. Rossiter, “Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds”, Aeronautical Research Council Reports and Memoranda, London,England, 1966.
  • V. Sarohia and P.F. Massier, “Control of cavity noise”, Journal of Aircraft, Vol. 14, pp. 833–837, 1977.
  • L.L. Shaw, “Suppression of aerodynamically induced cavity pressure oscillations”, The Journal of the Acoustical Society of America 66, 880, 1979.
  • S. Yamouni, C. Mettot, D. Sipp and L.Jacquin, “Passive control of cavity flows”, Journal of Aerospace Lab, Issue 6, 2013.
  • B. Zafer and F. Cosgun, “Aeroacoustics investigation of incompressible unsteady cavity flow”, Journal of The Faculty of Engineering and Architecture of Gazi University, Vol. 31-3, pp. 665–675, 2016.
  • Fluent Theory Guide, Ansys Inc, 2013.
  • B. Zafer and F. Cosgun, “Aeroacoustics analysis of cavity flow” Journal of Thermal Science and Technology, Vol. 38-2, pp 25-38, 2018.
  • B. Zafer and O. Konan, “Aeroacoustic analysis of cavity – airfoil Interaction”, DokuzEylul University-Faculty of Engineering Journal of Science and Engineering, Vol. 19, Issue 55,January 2017.
  • V. G. Basovsky, I. M. Gorban, O.V.Khomenko, “Modification of hydrodynamic and acoustic fields generated by a cavity with fluid suction”, Modern Mathematics and Mechanics, Chapter 9, pp 137-158, 2018.
There are 23 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Furkan Coşgun 0000-0002-3326-2192

Sertaç Çadırcı 0000-0002-2281-721X

Publication Date January 24, 2020
Published in Issue Year 2020

Cite

APA Coşgun, F., & Çadırcı, S. (2020). Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(64), 259-269. https://doi.org/10.21205/deufmd.2020226425
AMA Coşgun F, Çadırcı S. Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. DEUFMD. January 2020;22(64):259-269. doi:10.21205/deufmd.2020226425
Chicago Coşgun, Furkan, and Sertaç Çadırcı. “Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, no. 64 (January 2020): 259-69. https://doi.org/10.21205/deufmd.2020226425.
EndNote Coşgun F, Çadırcı S (January 1, 2020) Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 64 259–269.
IEEE F. Coşgun and S. Çadırcı, “Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation”, DEUFMD, vol. 22, no. 64, pp. 259–269, 2020, doi: 10.21205/deufmd.2020226425.
ISNAD Coşgun, Furkan - Çadırcı, Sertaç. “Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/64 (January 2020), 259-269. https://doi.org/10.21205/deufmd.2020226425.
JAMA Coşgun F, Çadırcı S. Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. DEUFMD. 2020;22:259–269.
MLA Coşgun, Furkan and Sertaç Çadırcı. “Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 22, no. 64, 2020, pp. 259-6, doi:10.21205/deufmd.2020226425.
Vancouver Coşgun F, Çadırcı S. Numerical Investigation of Unsteady Cavity Flow Aeroacoustics by Large Eddy Simulation. DEUFMD. 2020;22(64):259-6.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.