Research Article
BibTex RIS Cite

Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications

Year 2021, , 1 - 9, 15.01.2021
https://doi.org/10.21205/deufmd.2021236701

Abstract

Hydroxyapatite (HA) is the main inorganic component of bone and teeth and having high bioactivity, biocompatibility and osteointegration capability. Recently, wollastonite (WT) has been offered to reinforce HA to further increase biocompatibility and also mechanical strength. The focus of this study was to produce and characterize HA/WT composite granules with spray drying. Commercial WT particles were introduced into the lab made HA nanoparticles in order to prepare a slurry for spray drying. Spray dried HA/WT granules (SD-HA/WT) were investigated in terms of thermo-physical properties by SEM, FTIR, granule size analyzer, TG-DTA and XRD. The investigations proved that composite granules were comprised both HA and WT phases. The granules contained HA nanoparticles (as a matrix) and WT particles that entangled in the HA matrix and on the surface of the granules. The heat treatment at 750 °C led to the calcination of synthesized HA nanoparticles, while, the nanoparticles were sintered together by the heat treatment at 1000 °C and 1250 °C, thus the mechanical integrity of the granules was developed. The phase structure of the granules was remained stable (dominantly crystalline HA and WT) after the heat treatments. However, WT reinforcement caused to decrease the dehydroxylation temperature of HA and other calcium phosphates were formed after the heat treatment at 1000 °C. Rietveld Refinement analysis revealed that composite granules had 82.3% and 15.6% HA and WT phases, respectively. Spherical shaped granules with 36 µm median size (d50) would be used in thermal spraying, 3d printing or hot-pressing processes.

Supporting Institution

Scientific Research Projects Unit of Sakarya University

Project Number

2015-50-02-034

Thanks

The authors wish to thank Scientific Research Projects Unit of Sakarya University for the financial support (Project No: 2015-50-02-034). The authors would like to thank Sakarya University Department of Chemistry for FTIR analyzes.

References

  • Referans1 Siddiqui, H., Pickering, K., Mucalo, M., Siddiqui, H.A., Pickering, K.L., Mucalo, M.R. 2018. A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes, Materials, vol. 11, pp. 1813. DOI: 10.3390/ma11101813.
  • Referans2 Yan, S., Feng, L., Zhu, Q., Yang, W., Lan, Y., Li, D., Liu, Y., Xue, W., Guo, R., Wu, G. 2018. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium-Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration, ACS Biomaterials Science & Engineering, vol. 4, pp. 3291–3303. DOI: 10.1021/acsbiomaterials.8b00459.
  • Referans3 Wang, Q., Tang, P., Ge, X., Li, P., Lv, C., Wang, M., Wang, K., Fang, L., Lu, X. 2018. Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity, Applied Surface Science, vol. 462, pp. 118–126. DOI: 10.1016/j.apsusc.2018.08.068.
  • Referans4 Wei, L., Yang, H., Hong, J., He, Z., Deng, C. 2019. Synthesis and structure properties of Se and Sr co-doped hydroxyapatite and their biocompatibility, Journal of Materials Science, vol. 54, pp. 2514–2525. DOI: 10.1007/s10853-018-2951-7.
  • Referans5 Zhu, H., Guo, D., Sun, L., Li, H., Hanaor, D.A.H., Schmidt, F., Xu, K. 2018. Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite, Journal of the European Ceramic Society, vol. 38, pp. 5554–5562. DOI: 10.1016/j.jeurceramsoc.2018.07.056.
  • Referans6 Yao, H.-L., Hu, X.-Z., Bai, X.-B., Wang, H.-T., Chen, Q.-Y., Ji, G.-C. 2018. Comparative study of HA/TiO2 and HA/ZrO2 composite coatings deposited by high-velocity suspension flame spray (HVSFS), Surface and Coatings Technology, vol. 351, pp. 177–187. DOI: 10.1016/j.surfcoat.2018.07.082.
  • Referans7 Garcia, E., Miranzo, P., Sainz, M.A. 2018. Thermally sprayed wollastonite and wollastonite-diopside compositions as new modulated bioactive coatings for metal implants, Ceramics International, vol. 44, pp. 12896–12904. DOI: 10.1016/j.ceramint.2018.04.100.
  • Referans8 R. Morsy 2016. Synthesis and in vitro Bioactivity Mechanism of Synthetic α-wollastonite and β-wollastonite Bioceramics,. DOI: 10.4416/JCST2015-00028.
  • Referans9 Solonenko, A.P., Blesman, A.I., Polonyankin, D.A. 2018. Preparation and in vitro apatite-forming ability of hydroxyapatite and β-wollastonite composite materials, Ceramics International, vol. 44, pp. 17824–17834. DOI: 10.1016/j.ceramint.2018.06.251.
  • Referans10 Bastan, F.E., Erdogan, G., Moskalewicz, T., Ustel, F. 2017. Spray drying of hydroxyapatite powders: The effect of spray drying parameters and heat treatment on the particle size and morphology, Journal of Alloys and Compounds, vol. 724, pp. 586–596. DOI: 10.1016/j.jallcom.2017.07.116.
  • Referans11 Özbek, Y.Y., Baştan, F.E., Üstel, F. 2016. Synthesis and characterization of strontium-doped hydroxyapatite for biomedical applications, Journal of Thermal Analysis and Calorimetry, vol. 125, pp. 745–750. DOI: 10.1007/s10973-016-5607-3.
  • Referans12 Ben, Y., Zhang, L., Wei, S., Zhou, T., Li, Z., Yang, H., Wang, Y., Selim, F.A., Wong, C., Chen, H. 2017. PVB modified spherical granules of β-TCP by spray drying for 3D ceramic printing, Journal of Alloys and Compounds, vol. 721, pp. 312–319. DOI: 10.1016/j.jallcom.2017.06.022.
  • Referans13 Wang, H., Liu, Y., Ning, X., Wang, Q., Wang, F., Chen, D. 2017. The influence of milling parameters on the characteristics of milled and spray-dried NiCoCrAlY–Al2O3 composite powders, Powder Metallurgy, vol. 60, pp. 15–21. DOI: 10.1080/00325899.2016.1264683.
  • Referans14 Lozano-Mandujano, D., Poblano-Salas, C.A., Ruiz-Luna, H., Esparza-Esparza, B., Giraldo-Betancur, A.L., Alvarado-Orozco, J.M., Trápaga-Martínez, L.G., Muñoz-Saldaña, J. 2017. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La<Subscript>2</Subscript>Zr<Subscript>2</Subscript>O<Subscript>7</Subscript>/LaAlO<Subscript>3</Subscript> Coatings, Journal of Thermal Spray Technology, vol. 26, pp. 1198–1206. DOI: 10.1007/s11666-017-0569-y.
  • Referans15 Sánchez, E., Moreno, A., Vicent, M., Salvador, M.D., Bonache, V., Klyatskina, E., Santacruz, I., Moreno, R. 2010. Preparation and spray drying of Al2O3–TiO2 nanoparticle suspensions to obtain nanostructured coatings by APS, Surface and Coatings Technology, vol. 205, pp. 987–992. DOI: 10.1016/j.surfcoat.2010.06.002.
  • Referans16 Bertrand, G., Roy, P., Filiatre, C., Coddet, C. 2005. Spray-dried ceramic powders: A quantitative correlation between slurry characteristics and shapes of the granules, Chemical Engineering Science, vol. 60, pp. 95–102. DOI: 10.1016/j.ces.2004.04.042.
  • Referans17 Schrijnemakers, A., André, S., Lumay, G., Vandewalle, N., Boschini, F., Cloots, R., Vertruyen, B. 2009. Mullite coatings on ceramic substrates: Stabilisation of Al2O3–SiO2 suspensions for spray drying of composite granules suitable for reactive plasma spraying, Journal of the European Ceramic Society, vol. 29, pp. 2169–2175. DOI: 10.1016/j.jeurceramsoc.2009.01.031.
  • Referans18 Patel, N., Gibson, I.R., Ke, S., Best, S.M., Bonfield, W. 2001. Calcining influence on the powder properties of hydroxyapatite, Journal of Materials Science: Materials in Medicine, vol. 12, pp. 181–188. DOI: 10.1023/A:1008986430940.
  • Referans19 Wang, A.-J., Lu, Y.-P., Zhu, R.-F., Li, S.-T., Xiao, G.-Y., Zhao, G.-F., Xu, W.-H. 2008. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres, Journal of Biomedical Materials Research Part A, vol. 87A, pp. 557–562. DOI: 10.1002/jbm.a.31895.
  • Referans20 Baştan, F.E., Atiq Ur Rehman, M., Avcu, Y.Y., Avcu, E., Üstel, F., Boccaccini, A.R. 2018. Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications, Colloids and Surfaces B: Biointerfaces, vol. 169, pp. 176–182. DOI: 10.1016/j.colsurfb.2018.05.005.
  • Referans21 Palakurthy, S., P, A.A., K, V.R. 2019. In vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications, Ceramics International, . DOI: 10.1016/j.ceramint.2019.03.169.
  • Referans22 Zhao, S.-N., Yang, D.-L., Wang, D., Pu, Y., Le, Y., Wang, J.-X., Chen, J.-F. 2019. Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites, Journal of Materials Science, vol. 54, pp. 3878–3892. DOI: 10.1007/s10853-018-3125-3.
  • Referans23 Chen, Z., Zhai, J., Wang, D., Chen, C. 2018. Bioactivity of hydroxyapatite/wollastonite composite films deposited by pulsed laser, Ceramics International, vol. 44, pp. 10204–10209. DOI: 10.1016/j.ceramint.2018.03.013.

Biyomedikal Uygulamalar için Wollastonit Partikül Takviyeli Hidroksiapatit Kompozit Granüllerin Üretilmesi ve Karakterizasyonu

Year 2021, , 1 - 9, 15.01.2021
https://doi.org/10.21205/deufmd.2021236701

Abstract

Hidroksiapatit (HA) kemik ve dişin temel inorganik bileşenidir ve yüksek biyoaktiviteye, biyouyumluluğa ve kemik bütünleşim kabiliyetine sahiptir. Son zamanlarda, biyouyumluluk ve mekanik mukavemetini ileriye taşıyabilmek için HA yapısına wollastonitin (WT) takviye edilmesi önerilmektedir. Bu çalışmanın odak noktası, püskürtme kurutma ile HA/WT kompozit granüllerin üretilmesi ve karakterize edilmesidir. Ticari WT partikülleri, laboratuvar ortamında hazırlanan HA nanopartiküllerine katılarak, püskürtme kurutma çamuru hazırlanmıştır. Püskürtme kurutulan HA/WT granüllerinin (SD-HA/WT) termo-fiziksel özellikleri SEM, FTIR, granül boyut ölçümü, TG-DTA ve XRD analizleriyle incelenmiştir. Analizler, kompozit granüllerin HA ve WT fazlarından oluştuğunu ortaya koymuştur. Granüller, matrisi oluşturan HA nanopartiküllerden ve HA matris içerisine ve yüzeye karışmış WT partiküllerden oluşmuştur. 750 °C’de yapılan ısıl işlem, sentezlenen HA nanopartiküllerin kalsinasyonuna neden olurken, 1000 °C ve 1250 °C’de yapılan ısıl işlemler sayesinde HA nanopartikülleri sinterlenmiştir, dolayısıyla granüllerin mekanik özellikleri artmıştır. Granüllerin faz yapıları ısıl işlemden sonra stabil kalmıştır (baskın olarak kristalin HA ve WT). Bununla birlikte, WT takviyesi HA’nın dehidroksilasyon sıcaklığının düşmesine neden olmuştur ve 1000 °C’de yapılan ısıl işlemden sonra diğer kalsiyum fosfat fazları oluşmuştur. Rietveld Refinement analizi, granüllerin sırasıyla %82,3 ve %15,6 HA ve WT fazına sahip olduğunu ortaya çıkarmıştır. 36 μm medyan boyutuna (d50) sahip olan küresel granüller termal sprey, 3b yazıcı ve sıcak presleme prosesinde kullanılabilir.

Project Number

2015-50-02-034

References

  • Referans1 Siddiqui, H., Pickering, K., Mucalo, M., Siddiqui, H.A., Pickering, K.L., Mucalo, M.R. 2018. A Review on the Use of Hydroxyapatite-Carbonaceous Structure Composites in Bone Replacement Materials for Strengthening Purposes, Materials, vol. 11, pp. 1813. DOI: 10.3390/ma11101813.
  • Referans2 Yan, S., Feng, L., Zhu, Q., Yang, W., Lan, Y., Li, D., Liu, Y., Xue, W., Guo, R., Wu, G. 2018. Controlled Release of BMP-2 from a Heparin-Conjugated Strontium-Substituted Nanohydroxyapatite/Silk Fibroin Scaffold for Bone Regeneration, ACS Biomaterials Science & Engineering, vol. 4, pp. 3291–3303. DOI: 10.1021/acsbiomaterials.8b00459.
  • Referans3 Wang, Q., Tang, P., Ge, X., Li, P., Lv, C., Wang, M., Wang, K., Fang, L., Lu, X. 2018. Experimental and simulation studies of strontium/zinc-codoped hydroxyapatite porous scaffolds with excellent osteoinductivity and antibacterial activity, Applied Surface Science, vol. 462, pp. 118–126. DOI: 10.1016/j.apsusc.2018.08.068.
  • Referans4 Wei, L., Yang, H., Hong, J., He, Z., Deng, C. 2019. Synthesis and structure properties of Se and Sr co-doped hydroxyapatite and their biocompatibility, Journal of Materials Science, vol. 54, pp. 2514–2525. DOI: 10.1007/s10853-018-2951-7.
  • Referans5 Zhu, H., Guo, D., Sun, L., Li, H., Hanaor, D.A.H., Schmidt, F., Xu, K. 2018. Nanostructural insights into the dissolution behavior of Sr-doped hydroxyapatite, Journal of the European Ceramic Society, vol. 38, pp. 5554–5562. DOI: 10.1016/j.jeurceramsoc.2018.07.056.
  • Referans6 Yao, H.-L., Hu, X.-Z., Bai, X.-B., Wang, H.-T., Chen, Q.-Y., Ji, G.-C. 2018. Comparative study of HA/TiO2 and HA/ZrO2 composite coatings deposited by high-velocity suspension flame spray (HVSFS), Surface and Coatings Technology, vol. 351, pp. 177–187. DOI: 10.1016/j.surfcoat.2018.07.082.
  • Referans7 Garcia, E., Miranzo, P., Sainz, M.A. 2018. Thermally sprayed wollastonite and wollastonite-diopside compositions as new modulated bioactive coatings for metal implants, Ceramics International, vol. 44, pp. 12896–12904. DOI: 10.1016/j.ceramint.2018.04.100.
  • Referans8 R. Morsy 2016. Synthesis and in vitro Bioactivity Mechanism of Synthetic α-wollastonite and β-wollastonite Bioceramics,. DOI: 10.4416/JCST2015-00028.
  • Referans9 Solonenko, A.P., Blesman, A.I., Polonyankin, D.A. 2018. Preparation and in vitro apatite-forming ability of hydroxyapatite and β-wollastonite composite materials, Ceramics International, vol. 44, pp. 17824–17834. DOI: 10.1016/j.ceramint.2018.06.251.
  • Referans10 Bastan, F.E., Erdogan, G., Moskalewicz, T., Ustel, F. 2017. Spray drying of hydroxyapatite powders: The effect of spray drying parameters and heat treatment on the particle size and morphology, Journal of Alloys and Compounds, vol. 724, pp. 586–596. DOI: 10.1016/j.jallcom.2017.07.116.
  • Referans11 Özbek, Y.Y., Baştan, F.E., Üstel, F. 2016. Synthesis and characterization of strontium-doped hydroxyapatite for biomedical applications, Journal of Thermal Analysis and Calorimetry, vol. 125, pp. 745–750. DOI: 10.1007/s10973-016-5607-3.
  • Referans12 Ben, Y., Zhang, L., Wei, S., Zhou, T., Li, Z., Yang, H., Wang, Y., Selim, F.A., Wong, C., Chen, H. 2017. PVB modified spherical granules of β-TCP by spray drying for 3D ceramic printing, Journal of Alloys and Compounds, vol. 721, pp. 312–319. DOI: 10.1016/j.jallcom.2017.06.022.
  • Referans13 Wang, H., Liu, Y., Ning, X., Wang, Q., Wang, F., Chen, D. 2017. The influence of milling parameters on the characteristics of milled and spray-dried NiCoCrAlY–Al2O3 composite powders, Powder Metallurgy, vol. 60, pp. 15–21. DOI: 10.1080/00325899.2016.1264683.
  • Referans14 Lozano-Mandujano, D., Poblano-Salas, C.A., Ruiz-Luna, H., Esparza-Esparza, B., Giraldo-Betancur, A.L., Alvarado-Orozco, J.M., Trápaga-Martínez, L.G., Muñoz-Saldaña, J. 2017. Thermal Spray Deposition, Phase Stability and Mechanical Properties of La<Subscript>2</Subscript>Zr<Subscript>2</Subscript>O<Subscript>7</Subscript>/LaAlO<Subscript>3</Subscript> Coatings, Journal of Thermal Spray Technology, vol. 26, pp. 1198–1206. DOI: 10.1007/s11666-017-0569-y.
  • Referans15 Sánchez, E., Moreno, A., Vicent, M., Salvador, M.D., Bonache, V., Klyatskina, E., Santacruz, I., Moreno, R. 2010. Preparation and spray drying of Al2O3–TiO2 nanoparticle suspensions to obtain nanostructured coatings by APS, Surface and Coatings Technology, vol. 205, pp. 987–992. DOI: 10.1016/j.surfcoat.2010.06.002.
  • Referans16 Bertrand, G., Roy, P., Filiatre, C., Coddet, C. 2005. Spray-dried ceramic powders: A quantitative correlation between slurry characteristics and shapes of the granules, Chemical Engineering Science, vol. 60, pp. 95–102. DOI: 10.1016/j.ces.2004.04.042.
  • Referans17 Schrijnemakers, A., André, S., Lumay, G., Vandewalle, N., Boschini, F., Cloots, R., Vertruyen, B. 2009. Mullite coatings on ceramic substrates: Stabilisation of Al2O3–SiO2 suspensions for spray drying of composite granules suitable for reactive plasma spraying, Journal of the European Ceramic Society, vol. 29, pp. 2169–2175. DOI: 10.1016/j.jeurceramsoc.2009.01.031.
  • Referans18 Patel, N., Gibson, I.R., Ke, S., Best, S.M., Bonfield, W. 2001. Calcining influence on the powder properties of hydroxyapatite, Journal of Materials Science: Materials in Medicine, vol. 12, pp. 181–188. DOI: 10.1023/A:1008986430940.
  • Referans19 Wang, A.-J., Lu, Y.-P., Zhu, R.-F., Li, S.-T., Xiao, G.-Y., Zhao, G.-F., Xu, W.-H. 2008. Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres, Journal of Biomedical Materials Research Part A, vol. 87A, pp. 557–562. DOI: 10.1002/jbm.a.31895.
  • Referans20 Baştan, F.E., Atiq Ur Rehman, M., Avcu, Y.Y., Avcu, E., Üstel, F., Boccaccini, A.R. 2018. Electrophoretic co-deposition of PEEK-hydroxyapatite composite coatings for biomedical applications, Colloids and Surfaces B: Biointerfaces, vol. 169, pp. 176–182. DOI: 10.1016/j.colsurfb.2018.05.005.
  • Referans21 Palakurthy, S., P, A.A., K, V.R. 2019. In vitro evaluation of silver doped wollastonite synthesized from natural waste for biomedical applications, Ceramics International, . DOI: 10.1016/j.ceramint.2019.03.169.
  • Referans22 Zhao, S.-N., Yang, D.-L., Wang, D., Pu, Y., Le, Y., Wang, J.-X., Chen, J.-F. 2019. Design and efficient fabrication of micro-sized clusters of hydroxyapatite nanorods for dental resin composites, Journal of Materials Science, vol. 54, pp. 3878–3892. DOI: 10.1007/s10853-018-3125-3.
  • Referans23 Chen, Z., Zhai, J., Wang, D., Chen, C. 2018. Bioactivity of hydroxyapatite/wollastonite composite films deposited by pulsed laser, Ceramics International, vol. 44, pp. 10204–10209. DOI: 10.1016/j.ceramint.2018.03.013.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Fatih Erdem Baştan 0000-0002-9224-7742

Onurcan Karaarslan 0000-0003-0379-7206

Fatih Üstel 0000-0001-9024-8138

Project Number 2015-50-02-034
Publication Date January 15, 2021
Published in Issue Year 2021

Cite

APA Baştan, F. E., Karaarslan, O., & Üstel, F. (2021). Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(67), 1-9. https://doi.org/10.21205/deufmd.2021236701
AMA Baştan FE, Karaarslan O, Üstel F. Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. DEUFMD. January 2021;23(67):1-9. doi:10.21205/deufmd.2021236701
Chicago Baştan, Fatih Erdem, Onurcan Karaarslan, and Fatih Üstel. “Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 67 (January 2021): 1-9. https://doi.org/10.21205/deufmd.2021236701.
EndNote Baştan FE, Karaarslan O, Üstel F (January 1, 2021) Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 67 1–9.
IEEE F. E. Baştan, O. Karaarslan, and F. Üstel, “Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications”, DEUFMD, vol. 23, no. 67, pp. 1–9, 2021, doi: 10.21205/deufmd.2021236701.
ISNAD Baştan, Fatih Erdem et al. “Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/67 (January 2021), 1-9. https://doi.org/10.21205/deufmd.2021236701.
JAMA Baştan FE, Karaarslan O, Üstel F. Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. DEUFMD. 2021;23:1–9.
MLA Baştan, Fatih Erdem et al. “Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 67, 2021, pp. 1-9, doi:10.21205/deufmd.2021236701.
Vancouver Baştan FE, Karaarslan O, Üstel F. Production and Characterization of Wollastonite Particles Reinforced Hydroxyapatite Composite Granules for Biomedical Applications. DEUFMD. 2021;23(67):1-9.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.