Sulardan Vitamin Arıtımı: Nikotinik Asit Adsorpsiyonu
Year 2021,
, 479 - 487, 24.05.2021
Elif Caliskan Salihi
,
Selçuk Terzi
,
Sinem Gokturk
Abstract
Hem farmasötik endüstrisinin atık suları hem de evsel kullanım sonucu doğadaki su ortamlarına karışan biyomoleküllerden biri olan nikotinik asitin sulardan arıtılması insan ve çevre sağlığı üzerindeki olumsuz etkilerinden dolayı önem taşımaktadır. Bu sebeple bu çalışmada nikotinik asitin sulardan arıtılması maliyet ve kullanım açısından pek çok avantaj taşıyan adsorpsiyon yöntemi kullanılarak incelenmiştir. Adsorban olarak seçilen granüler ticari aktif karbonun nikotinik asiti sulu ortamdan uzaklaştırma etkinliği ve sıcaklık, pH gibi faktörlerin adsorpsiyon sürecine olan etkisi araştırılmıştır. Farklı başlangıç derişimlerindeki nikotinik asit çözeltileri kullanılarak çalkalama süresinin adsorpsiyon miktarı üzerindeki etkisi takip edilerek öncelikle adsorpsiyonun dengeye gelme süresi belirlenmiştir. Elde edilen kinetik veriler Lagergren 1. derece ve Yalancı 2. derece eşitlikleri ile modellenmiştir ve verilerin Lagergren 1. derece eşitliğine daha iyi uyduğu görülmüştür. Adsorpsiyon mekanizmasında tanecik içi difüzyonunun rol oynadığı ortaya koyulmuş ve hızı kontrol eden tek adımın tanecik içi difüzyon olmadığı anlaşılmıştır. Denge süresi boyunca yürütülen çalışmalardan elde edilen denge verileri ise Langmuir ve Freundlich izoterm eşitlikleri kullanılarak modellenmiş ve izoterm sabitleri hesaplanmıştır. Giles sınıflandırmasına göre L tipine uyduğu gözlemlenen nikotinik asit adsorpsiyonunun Langmuir denklemine daha iyi uyduğu tespit edilmiş ve adsorpsiyon kapasitesinin sıcaklığın düşmesi ile arttığı, ortamın pH değerinin değişmesinden ise önemli ölçüde etkilendiği tespit edilmiştir.
References
- [1] The Carbon Society of Japan. 1996. Introduction of New Carbon Materials. Realize Inc. Press.
- [2] Shen, W., Wang, H., Guan, R., Li, Z. 2008. Surface modification of activated carbon fiber and its adsorption for vitamin B1 and folic acid, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 331(3), s. 263-267.
- [3] Ana Marı́a, R., Otero, M., Rodrigues, A.E. 2004 Recovery of Vitamin B12 and cephalosporin-C from aqueous solutions by adsorption on non-ionic polymeric adsorbents, Separation and Purification Technology, Cilt 38(1), s. 85-98.
- [4] Howe-Grant, M. 1992. Kirk-Othmer Encyclopedia of Chemical Technology (vol. 4). John Wiley & Sons, New York.
- [5] Ayrancı, E., Duman, O. 2006. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification, Journal of Hazardous Materials, Cilt 136(3), s. 542-552.
- [6] Ania, C.O., Parra, J.B., Pis, J.J. 2002. Influence of oxygen-containing functional groups on activated carbon adsorption of selected organic compounds, Fuel Process. Technol. Cilt 79, s. 265-271.
- [7] Abe, M., Kawashima, K., Kozawa, K., Sakai, H., Kaneko, K. 2000. Amination of activated carbon and adsorption characteristics of its aminated surface, Langmuir. Cilt 16, s. 5059-5063.
- [8] Mahramanlioglu, M., Bicer, I., Misirli, T., Caliskan, E., Guel, S., Misirli, C. 2006. The removal of anionic naphthalene derivatives by the adsorbents produced from used tires. Fresenius Environmental Bulletin. Cilt 15, s. 1150-1155.
- [9] Haghseresht, F., Nouri, S., Lu, G.Q. 2002. Effects of the solute ionization on the adsorption of aromatic compounds from dilute aqueous solutions by activated carbon. Langmuir. Cilt 18, s. 1574-1579.
- [10] Çalışkan, E., Göktürk, S. 2010. Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Separation Science and Technology, Cilt 45(2), s. 244-255.
- [11] Cantürk Talman, R.Y., Çalışkan Salihi, E., Göktürk, S., Baştuğ, A.S. 2015. Removal of ethacridine lactate from aqueous solutions onto bentonite and activated carbon. Fresenius Environmental Bulletin, Cilt 24(11), s. 3603-3608.
- [12] Caliskan Salihi, E. 2017 Adsorption of Metamizole sodium by activated carbon in simulated gastric and intestinal fluids. Journal of the Turkish Chemical Society, Section A: Chemistry, Cilt 5(1), s. 237-246.
- [13] Otero, M., Grande, C.A., Rodrigues, A.E. 2004. Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. Reactive & Functional Polymers, Cilt 60, s. 203-213.
- [14] Bhatia, D., Datta, D., Joshi, A., Gupta, S., Gote, Y. 2019. Adsorption of isonicotinic acid from aqueous solution using multi-walled carbon nanotubes/Fe3O4. Journal of Molecular Liquids, Cilt 276, s. 163-169.
- [15] Bhatia, D., Datta, D., Joshi, A., Gupta, S., Gote, Y. 2018. Adsorption study for the separation of isonicotinic acid from aqueous solution using activated carbon/Fe3O4 composites. Journal of Chemical & Engineering Data, Cilt 63(2), s. 436-445.
- [16] Datta, D., Sah, S., Rawat, N., Kumar, R. 2017. Application of magnetically activated carbon for the separation of nicotinic acid from aqueous solution. Journal of Chemical & Engineering Data, Cilt 62(2), s. 712-719.
- [17] Dancu, A.C., Barabas, R., Bogya., E.S. 2011. Adsorption of nicotinic acid on the surface of nanosized hydroxyapatite and structurally modified hydroxyapatite. Central European Journal of Chemistry 9, Cilt 4, s. 660-669.
- [18] Tian, H.W., Li, W.H., Wang, D.P., Hou, B.R. 2012. Adsorption mechanism of nicotinic acid onto a passive iron surface. Acta Physico-Chimica Sinica, Cilt 28(1), s. 137-145.
- [19] Guo, Z., Zhu, G., Gao, B., Zhang, D., Tian, G., Chen, Y., Zhang, W., Qiu, S. 2005. Adsorption of vitamin B12 on ordered mesoporous carbons coated with PMMA. Carbon, Cilt 43 (11), s. 2344-2351.
- [20] Kang, J., Zhan, W., Li, D., Wang, X., Song, J., Liu, D. 2011. Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B6 production. Physics and Chemistry of the Earth Parts A/B/C, Cilt 36(9-11), s. 455-458.
- [21] Gadipelly, C., Pérez-González, A., Yadav, G.D., Ortiz, I., Ibáñez, R., Rathod, V.K., Marathe, K.V. 2014. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research, Cilt 53(29), s. 11571-11592.
- [22] Mohammad, A., Inamuddin, Amin, A., Naushad, M., El-Desoky, G.E. 2013. Nicotinic Acid Adsorption Thermodynamics Study on Carboxymethyl Cellulose Ce(IV) Molybdophosphate Composite Cation-Exchanger. J. Therm. Anal. Calorim., Cilt 111, s. 831−838.
- [23] Chuck, R. 2005. A Catalytic Green Process for The Production of Niacin. Appl. Catal. A, Cilt 280, s. 75−82.
- [24] Anbia, M., Parvin, Z., Sepehrian, M. 2019. Application of modified nanoporous materials in ascorbic acid adsorption. Particulate Science and Technology, Cilt 37(6), s. 750-756.
- [25] Terzi, S.M. 2018. Aktif Karbon Üzerinde Nikotinik Asit Adsorpsiyonunun İncelenmesi. Marmara Üniversitesi, Sağlık Bilimleri Enstitüsü, Yüksek Lisans Tezi, 75 s, İstanbul.
- [26] Noh, J.S., Schwarz, J.A., 1989. Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci., Cilt 130, s. 157–164.
- [27] Gritti, F., Guiochon, G. 2009. Characteristics of the adsorption mechanism of acido-basic compounds with two pKa in reversed-phase liquid chromatography. Journal of Chromatography A., Cilt 1216 (41), s. 6917-6930.
- [28] Giles, C.H., Macewan, T.H., Nakhwa, S.N., Smith, D.J., 1960. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc., Cilt 786, s. 3973–3993.
- [29] Salihi, E.Ç. and Mahramanlıoğlu, M., 2014. Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect. Applied Clay Science, Cilt 101, s. 381-389.
- [30] Gök, O., Çimen Mesutoğlu, Ö. 2018. Adsorpsiyon Kolon Sisteminde Pirina Kullanılarak Ağır Metal Giderimi. Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt 20, Sayı 60, s. 1000-1009.
- [31] Çalışkan Salihi, E. and Aydın, E. 2017. Adsorptive characteristics of isoniazid on powdered activated carbon: π–π Dispersion interactions at the solid–solution interface. Journal of Dispersion Science and Technology, Cilt 38(4), s. 457-462.
Purification of Vitamins from Waters: Nicotinic Acid Adsorption
Year 2021,
, 479 - 487, 24.05.2021
Elif Caliskan Salihi
,
Selçuk Terzi
,
Sinem Gokturk
Abstract
Purification of nicotinic acid, one of the biomolecules contaminates natural waters as a result of both waste waters of pharmaceutical industry and household usage, is important due to negative effects on human and environmental health. Therefore, the removal of nicotinic acid from waters using adsorption method which has many advantages related to cost and utilization. Nicotinic acid removal performance of commercial activated carbon selected as adsorbent, and the effect of factors such as temperature, pH on the adsorption process was investigated. Time to reach equilibrium was determined initially by following up the effect of shaking time on adsorption quantity using nicotinic acid solutions having different initial concentrations. Kinetic data obtained was modeled by using Lagergren 1st order and Pseudo 2nd order equations and it was seen that experimental data better fit the Lagergren 1st order equation. It was introduced that intraparticle diffusion plays a role in the adsorption mechanism and it is understood that intraparticle diffusion is not the only step controlling the adsorption rate. Equilibrium data were modeled by using Langmuir and Freundlich equations and isotherm constants were calculated. It was determined that nicotinic acid adsorption which is L-type according to Giles classification, fits better to the Langmuir equation and the adsorption capacity increases with a decrease in the temperature while any change in the pH of the medium effects it considerably.
References
- [1] The Carbon Society of Japan. 1996. Introduction of New Carbon Materials. Realize Inc. Press.
- [2] Shen, W., Wang, H., Guan, R., Li, Z. 2008. Surface modification of activated carbon fiber and its adsorption for vitamin B1 and folic acid, Colloids and Surfaces A: Physicochemical and Engineering Aspects, Cilt 331(3), s. 263-267.
- [3] Ana Marı́a, R., Otero, M., Rodrigues, A.E. 2004 Recovery of Vitamin B12 and cephalosporin-C from aqueous solutions by adsorption on non-ionic polymeric adsorbents, Separation and Purification Technology, Cilt 38(1), s. 85-98.
- [4] Howe-Grant, M. 1992. Kirk-Othmer Encyclopedia of Chemical Technology (vol. 4). John Wiley & Sons, New York.
- [5] Ayrancı, E., Duman, O. 2006. Adsorption of aromatic organic acids onto high area activated carbon cloth in relation to wastewater purification, Journal of Hazardous Materials, Cilt 136(3), s. 542-552.
- [6] Ania, C.O., Parra, J.B., Pis, J.J. 2002. Influence of oxygen-containing functional groups on activated carbon adsorption of selected organic compounds, Fuel Process. Technol. Cilt 79, s. 265-271.
- [7] Abe, M., Kawashima, K., Kozawa, K., Sakai, H., Kaneko, K. 2000. Amination of activated carbon and adsorption characteristics of its aminated surface, Langmuir. Cilt 16, s. 5059-5063.
- [8] Mahramanlioglu, M., Bicer, I., Misirli, T., Caliskan, E., Guel, S., Misirli, C. 2006. The removal of anionic naphthalene derivatives by the adsorbents produced from used tires. Fresenius Environmental Bulletin. Cilt 15, s. 1150-1155.
- [9] Haghseresht, F., Nouri, S., Lu, G.Q. 2002. Effects of the solute ionization on the adsorption of aromatic compounds from dilute aqueous solutions by activated carbon. Langmuir. Cilt 18, s. 1574-1579.
- [10] Çalışkan, E., Göktürk, S. 2010. Adsorption characteristics of sulfamethoxazole and metronidazole on activated carbon. Separation Science and Technology, Cilt 45(2), s. 244-255.
- [11] Cantürk Talman, R.Y., Çalışkan Salihi, E., Göktürk, S., Baştuğ, A.S. 2015. Removal of ethacridine lactate from aqueous solutions onto bentonite and activated carbon. Fresenius Environmental Bulletin, Cilt 24(11), s. 3603-3608.
- [12] Caliskan Salihi, E. 2017 Adsorption of Metamizole sodium by activated carbon in simulated gastric and intestinal fluids. Journal of the Turkish Chemical Society, Section A: Chemistry, Cilt 5(1), s. 237-246.
- [13] Otero, M., Grande, C.A., Rodrigues, A.E. 2004. Adsorption of salicylic acid onto polymeric adsorbents and activated charcoal. Reactive & Functional Polymers, Cilt 60, s. 203-213.
- [14] Bhatia, D., Datta, D., Joshi, A., Gupta, S., Gote, Y. 2019. Adsorption of isonicotinic acid from aqueous solution using multi-walled carbon nanotubes/Fe3O4. Journal of Molecular Liquids, Cilt 276, s. 163-169.
- [15] Bhatia, D., Datta, D., Joshi, A., Gupta, S., Gote, Y. 2018. Adsorption study for the separation of isonicotinic acid from aqueous solution using activated carbon/Fe3O4 composites. Journal of Chemical & Engineering Data, Cilt 63(2), s. 436-445.
- [16] Datta, D., Sah, S., Rawat, N., Kumar, R. 2017. Application of magnetically activated carbon for the separation of nicotinic acid from aqueous solution. Journal of Chemical & Engineering Data, Cilt 62(2), s. 712-719.
- [17] Dancu, A.C., Barabas, R., Bogya., E.S. 2011. Adsorption of nicotinic acid on the surface of nanosized hydroxyapatite and structurally modified hydroxyapatite. Central European Journal of Chemistry 9, Cilt 4, s. 660-669.
- [18] Tian, H.W., Li, W.H., Wang, D.P., Hou, B.R. 2012. Adsorption mechanism of nicotinic acid onto a passive iron surface. Acta Physico-Chimica Sinica, Cilt 28(1), s. 137-145.
- [19] Guo, Z., Zhu, G., Gao, B., Zhang, D., Tian, G., Chen, Y., Zhang, W., Qiu, S. 2005. Adsorption of vitamin B12 on ordered mesoporous carbons coated with PMMA. Carbon, Cilt 43 (11), s. 2344-2351.
- [20] Kang, J., Zhan, W., Li, D., Wang, X., Song, J., Liu, D. 2011. Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B6 production. Physics and Chemistry of the Earth Parts A/B/C, Cilt 36(9-11), s. 455-458.
- [21] Gadipelly, C., Pérez-González, A., Yadav, G.D., Ortiz, I., Ibáñez, R., Rathod, V.K., Marathe, K.V. 2014. Pharmaceutical industry wastewater: review of the technologies for water treatment and reuse. Industrial & Engineering Chemistry Research, Cilt 53(29), s. 11571-11592.
- [22] Mohammad, A., Inamuddin, Amin, A., Naushad, M., El-Desoky, G.E. 2013. Nicotinic Acid Adsorption Thermodynamics Study on Carboxymethyl Cellulose Ce(IV) Molybdophosphate Composite Cation-Exchanger. J. Therm. Anal. Calorim., Cilt 111, s. 831−838.
- [23] Chuck, R. 2005. A Catalytic Green Process for The Production of Niacin. Appl. Catal. A, Cilt 280, s. 75−82.
- [24] Anbia, M., Parvin, Z., Sepehrian, M. 2019. Application of modified nanoporous materials in ascorbic acid adsorption. Particulate Science and Technology, Cilt 37(6), s. 750-756.
- [25] Terzi, S.M. 2018. Aktif Karbon Üzerinde Nikotinik Asit Adsorpsiyonunun İncelenmesi. Marmara Üniversitesi, Sağlık Bilimleri Enstitüsü, Yüksek Lisans Tezi, 75 s, İstanbul.
- [26] Noh, J.S., Schwarz, J.A., 1989. Estimation of the point of zero charge of simple oxides by mass titration. J. Colloid Interface Sci., Cilt 130, s. 157–164.
- [27] Gritti, F., Guiochon, G. 2009. Characteristics of the adsorption mechanism of acido-basic compounds with two pKa in reversed-phase liquid chromatography. Journal of Chromatography A., Cilt 1216 (41), s. 6917-6930.
- [28] Giles, C.H., Macewan, T.H., Nakhwa, S.N., Smith, D.J., 1960. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. J. Chem. Soc., Cilt 786, s. 3973–3993.
- [29] Salihi, E.Ç. and Mahramanlıoğlu, M., 2014. Equilibrium and kinetic adsorption of drugs on bentonite: Presence of surface active agents effect. Applied Clay Science, Cilt 101, s. 381-389.
- [30] Gök, O., Çimen Mesutoğlu, Ö. 2018. Adsorpsiyon Kolon Sisteminde Pirina Kullanılarak Ağır Metal Giderimi. Dokuz Eylül Üniversitesi-Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt 20, Sayı 60, s. 1000-1009.
- [31] Çalışkan Salihi, E. and Aydın, E. 2017. Adsorptive characteristics of isoniazid on powdered activated carbon: π–π Dispersion interactions at the solid–solution interface. Journal of Dispersion Science and Technology, Cilt 38(4), s. 457-462.