Research Article
BibTex RIS Cite

Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA

Year 2021, , 835 - 844, 15.09.2021
https://doi.org/10.21205/deufmd.2021236911

Abstract

Satellite-based gravity models have been used constantly in many different areas recently. The easy accessibility of the data provides great advantages for difficult conditions such as mountainous areas or the ability to calculate directly for inaccessible areas such as Arctic regions. In addition, shallow studies are possible by increasing the spatial resolution over time by using new satellites and new models obtained from these satellite data. Spatial resolution can be increased with the use of terrestrial data and thus the most representative satellite gravity model which has the lowest error may be determined for a region. It is thought that the results obtained from the studies with this lowest error model represent that region in the best way. Within the scope of this study, experiments were conducted for former and current satellite gravity models using terrestrial gravity data that was collected in Kansas state. Besides, comparisons were made at different degree/order using only GOCE satellite gravity models (long wavelengths) and combined models (short wavelengths). As 8.63 mGal lowest error between satellite models and terrestrial data was obtained from XGM2019e_2159 and ERTM2160 combination. In the comparison between GOCE models, GOCE TIM R5 model gave the lowest error with a difference of 9.94 mGal. Although it is observed that the difference between the other combined models and the results obtained from the XGM2019e_2159 model does not exceed 0.4 mGal for degree up to 2190 and these values are not considered as a big difference in geophysical studies, but the sensitivity of these values is much more important in geodetic studies.

References

  • Wood, R., Woodward, D. 2002. Sediment thickness and crustal structure of offshore western New Zealand from 3D gravity modelling, New Zealand Journal of Geology and Geophysics, 45(2), 243-255.
  • Ebbing, J., Bouman, J., Fuchs, M., Lieb, V., Haagmans, R., Meekes, J.A.C., Fattah, R.A. 2013. Advancements in satellite gravity gradient data for crustal studies, The Leading Edge, 32(8), 900-906.
  • Lücke, O.H. 2014. Moho structure of Central America based on three-dimensional lithospheric density modelling of satellite-derived gravity data, International Journal of Earth Sciences, 103(7), 1733-1745.
  • Reguzzoni, M., Sampietro, D. 2015. GEMMA: An Earth crustal model based on GOCE satellite data, International Journal of Applied Earth Observation and Geoinformation, 35, 31-43.
  • Alvarez, O., Gimenez, M.E., Martinez, M.P., Klinger, F.L., Braitenberg, C. 2015. New insights into the Andean crustal structure between 32 and 34 S from GOCE satellite gravity data and EGM2008 model, Geological Society, London, Special Publications, 399(1), 183-202.
  • Sampietro, D. 2016. Crustal modelling and Moho estimation with GOCE gravity data, In Remote Sensing Advances for Earth System Science, 127-144.
  • Dogru, F., Pamukcu, O., Gonenc, T., Yildiz, H. 2018. Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field models, Bollettino di Geofisica Teorica ed Applicata, 59(2), 135-160.
  • Mehrnia, S.R., Khaleghi, R. 2014. Determination of Seismic Lineaments by EGM2008 Data and Gravitational Facies in North of Qazvin, Iran, Journal of Seismology and Earthquake Engineering, 16(3), 147.
  • Doğru, F., Pamukçu, O. 2019. Analysis of gravity disturbance for boundary structures in the Aegean Sea and Western Anatolia, Geofizika, 36(1), 53-76.
  • Featherstone, W.E. 2002. Expected contributions of dedicated satellite gravity field missions to regional geoid determination with some examples from Australia, Journal of Geospatial Engineering, 4(1), 1-20.
  • Garcia, R.V. 2002. Local geoid determination from GRACE mission, Ph.D. thesis, Ohio State University, Division of Geodetic Science, USA.
  • Bouman, J. 2000. Quality assessment of satellite-based global gravity field models, Netherlands Geodetic Commission. Publications on Geodesy 48, Delft, 1-72.
  • Pail, R., Plank, G. 2002. Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform, Journal of Geodesy, 76(8), 462-474.
  • Ray, R.D., Luthcke, S.B. 2006. Tide model errors and GRACE gravimetry: towards a more realistic assessment, Geophysical Journal International, 167(3), 1055-1059.
  • Farahani, H.H., Ditmar, P., Klees, R. 2014. Assessment of the added value of data from the GOCE satellite mission to time-varying gravity field modelling, Journal of Geodesy, 88(2), 157-178.
  • Bickford, M.E., Harrower, K.L., Nusbaum, R.L., Thomas, J.J., Nelson, G.E. 1979, Preliminary geologic map of the Precambrian basement rocks of Kansas: Kansas Geological Survey, Map M-9, scale 1:500,000, 1 sheet.
  • Merriam, D.F. 1963. The geologic history of Kansas. University of Kansas publications.
  • Steeples, D.W. 1982. Structure of the Salina-Forest City interbasin boundary from seismic studies, In UMR Journal--VH McNutt Colloquium Series, 3, 1, 55-82.
  • Hirt, C., Kuhn, M., Claessens, S., Pail, R., Seitz, K., Gruber, T. 2014. Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model, Computers and Geosciences, 73, 71-80.
  • Lee, W. 1940. Subsurface Mississippian rocks of Kansas, Kansas Geological Survey Bulletin, 33, 114.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. 2008. An Earth gravitational model to degree 2160: EGM2008, European Geosciences Union General Assembly, 2008, Vienna, Austria.
  • Förste, C., Bruinsma, S., Abrikosov, O., Flechtner, F., Marty, J.C., Lemoine, J.M., ... and Biancale, R. 2014. EIGEN-6C4-The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse, EGU General Assembly Conference Abstracts, 16.
  • Gilardoni, M., Reguzzoni, M., Sampietro, D. 2016. GECO: a global gravity model by locally combining GOCE data and EGM2008, Studia Geophysica et Geodaetica, 60(2), 228-247.
  • Zingerle, P., Pail, R., Gruber, T., Oikonomidou, X. 2020. The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7).
  • Lam, C.K., Yarger, H.L. 1989. State gravity map of Kansas, Kansas Geological Survey. Bulletin, 226, 185-196.
  • Hahn, R.K. 1980. Upper mantle velocity structure in eastern Kansas from teleseismic P-wave residuals: M. S. thesis, Department of Geology, University of Kansas, 85.
  • Yarger, H.L. 1980. Aeromagnetic analysis of the Keweenawan rift in Kansas, EOS, American Geophysical Union, Transactions, 61, 48, 1,192.
  • Bucha, B., Janák, J. 2013. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders, Computers and Geosciences, 56, 186-196.
  • Brockmann, J.M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., Schuh, W.D. 2014. EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission, Geophysical Research Letters, 41(22), 8089-8099.
  • Bruinsma, S.L., Förste, C., Abrikosov, O., Lemoine, J.M., Marty, J.C., Mulet, S., ... and Bonvalot, S. 2014. ESA's satellite only gravity field model via the direct approach based on all GOCE data, Geophysical Research Letters, 41(21), 7508-7514.
  • Bruinsma, S.L., Förste, C., Abrikosov, O., Marty, J. C., Rio, M.H., Mulet, S. and Bonvalot, S. 2013. The new ESA satellite only gravity field model via the direct approach, Geophysical Research Letters, 40(14), 3607-3612.
  • Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.D., ... and Veicherts, M. 2011. First GOCE gravity field models derived by three different approaches, Journal of Geodesy, 85(11), 819.
  • Serpa, L., Setzer, T., Farmer, H., Brown, L., Oliver, J., Kaufman, S., ... and Steeples, D.W. 1984. Structure of the southern Keweenawan rift from COCORP surveys across the Midcontinent geophysical anomaly in northeastern Kansas, Tectonics, 3(3), 367-384.
  • Somanas, C., Knapp, R.W., Yarger, H.L., Steeples, D.W. 1989. Geophysical model of the Midcontinent Geophysical Anomaly in northeastern Kansas, Kansas Geological Survey Bulletin, 226, 215-228.

Yeni ve Eski Uydu Tabanlı Gravite Modellerinin Karşılaştırılması: Kansas, ABD Örnek Çalışma

Year 2021, , 835 - 844, 15.09.2021
https://doi.org/10.21205/deufmd.2021236911

Abstract

Uydu tabanlı gravite modelleri son zamanlarda pek çok farklı alanda kullanılmaktadır. Verilere kolay erişilebilirlik, dağlık alanlar gibi zor koşullar için veya Arktik bölgeleri gibi erişilemeyen alanlar için doğrudan hesaplama imkanı büyük avantajlar sağlamaktadır. Ayrıca yeni uydular ve bu uydu verilerinden elde edilen yeni modeller sayesinde zaman içinde uzaysal çözünürlük artırılarak sığ çalışmalar yapmak mümkün olacaktır. Karasal verilerin kullanılmasıyla uzaysal çözünürlük artırılabilir ve böylelikle bir bölge için en düşük hataya sahip o bölgeyi temsil eden uydu gravite modeli belirlenebilmektedir. Bu en düşük hata modeli ile yapılan çalışmalardan elde edilen sonuçların o bölgeyi en iyi şekilde temsil ettiği düşünülmektedir. Bu çalışma kapsamında, Kansas eyaletinde toplanan karasal gravite verileri kullanılarak eski ve güncel uydu yerçekimi modelleri için denemeler yapılmıştır. Ayrıca, sadece GOCE uydu gravite modelleri (uzun dalga boyları) ve kombine modeller (kısa dalga boyları) kullanılarak farklı derece ve sırada karşılaştırmalar yapılmıştır. Uydu modelleri ve karasal veriler arasındaki en düşük hata 8,63 mGal olarak XGM2019e_2159 ve ERTM2160 kombinasyonundan elde edilmiştir. GOCE modelleri arasındaki karşılaştırmada, GOCE TIM R5 modeli 9,94 mGal farkla en düşük hatayı vermiştir. Diğer birleşik modeller ile XGM2019e_2159 modelinden elde edilen sonuçlar arasındaki farkın 2190'a kadar olan derece için 0,4 mGal'ı geçmediği ve bu değerler jeofizik çalışmalar için önemli olmadığı halde jeodezik çalışmalar için önemlidir.

References

  • Wood, R., Woodward, D. 2002. Sediment thickness and crustal structure of offshore western New Zealand from 3D gravity modelling, New Zealand Journal of Geology and Geophysics, 45(2), 243-255.
  • Ebbing, J., Bouman, J., Fuchs, M., Lieb, V., Haagmans, R., Meekes, J.A.C., Fattah, R.A. 2013. Advancements in satellite gravity gradient data for crustal studies, The Leading Edge, 32(8), 900-906.
  • Lücke, O.H. 2014. Moho structure of Central America based on three-dimensional lithospheric density modelling of satellite-derived gravity data, International Journal of Earth Sciences, 103(7), 1733-1745.
  • Reguzzoni, M., Sampietro, D. 2015. GEMMA: An Earth crustal model based on GOCE satellite data, International Journal of Applied Earth Observation and Geoinformation, 35, 31-43.
  • Alvarez, O., Gimenez, M.E., Martinez, M.P., Klinger, F.L., Braitenberg, C. 2015. New insights into the Andean crustal structure between 32 and 34 S from GOCE satellite gravity data and EGM2008 model, Geological Society, London, Special Publications, 399(1), 183-202.
  • Sampietro, D. 2016. Crustal modelling and Moho estimation with GOCE gravity data, In Remote Sensing Advances for Earth System Science, 127-144.
  • Dogru, F., Pamukcu, O., Gonenc, T., Yildiz, H. 2018. Lithospheric structure of western Anatolia and the Aegean Sea using GOCE-based gravity field models, Bollettino di Geofisica Teorica ed Applicata, 59(2), 135-160.
  • Mehrnia, S.R., Khaleghi, R. 2014. Determination of Seismic Lineaments by EGM2008 Data and Gravitational Facies in North of Qazvin, Iran, Journal of Seismology and Earthquake Engineering, 16(3), 147.
  • Doğru, F., Pamukçu, O. 2019. Analysis of gravity disturbance for boundary structures in the Aegean Sea and Western Anatolia, Geofizika, 36(1), 53-76.
  • Featherstone, W.E. 2002. Expected contributions of dedicated satellite gravity field missions to regional geoid determination with some examples from Australia, Journal of Geospatial Engineering, 4(1), 1-20.
  • Garcia, R.V. 2002. Local geoid determination from GRACE mission, Ph.D. thesis, Ohio State University, Division of Geodetic Science, USA.
  • Bouman, J. 2000. Quality assessment of satellite-based global gravity field models, Netherlands Geodetic Commission. Publications on Geodesy 48, Delft, 1-72.
  • Pail, R., Plank, G. 2002. Assessment of three numerical solution strategies for gravity field recovery from GOCE satellite gravity gradiometry implemented on a parallel platform, Journal of Geodesy, 76(8), 462-474.
  • Ray, R.D., Luthcke, S.B. 2006. Tide model errors and GRACE gravimetry: towards a more realistic assessment, Geophysical Journal International, 167(3), 1055-1059.
  • Farahani, H.H., Ditmar, P., Klees, R. 2014. Assessment of the added value of data from the GOCE satellite mission to time-varying gravity field modelling, Journal of Geodesy, 88(2), 157-178.
  • Bickford, M.E., Harrower, K.L., Nusbaum, R.L., Thomas, J.J., Nelson, G.E. 1979, Preliminary geologic map of the Precambrian basement rocks of Kansas: Kansas Geological Survey, Map M-9, scale 1:500,000, 1 sheet.
  • Merriam, D.F. 1963. The geologic history of Kansas. University of Kansas publications.
  • Steeples, D.W. 1982. Structure of the Salina-Forest City interbasin boundary from seismic studies, In UMR Journal--VH McNutt Colloquium Series, 3, 1, 55-82.
  • Hirt, C., Kuhn, M., Claessens, S., Pail, R., Seitz, K., Gruber, T. 2014. Study of the Earth’s short-scale gravity field using the ERTM2160 gravity model, Computers and Geosciences, 73, 71-80.
  • Lee, W. 1940. Subsurface Mississippian rocks of Kansas, Kansas Geological Survey Bulletin, 33, 114.
  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor, J.K. 2008. An Earth gravitational model to degree 2160: EGM2008, European Geosciences Union General Assembly, 2008, Vienna, Austria.
  • Förste, C., Bruinsma, S., Abrikosov, O., Flechtner, F., Marty, J.C., Lemoine, J.M., ... and Biancale, R. 2014. EIGEN-6C4-The latest combined global gravity field model including GOCE data up to degree and order 1949 of GFZ Potsdam and GRGS Toulouse, EGU General Assembly Conference Abstracts, 16.
  • Gilardoni, M., Reguzzoni, M., Sampietro, D. 2016. GECO: a global gravity model by locally combining GOCE data and EGM2008, Studia Geophysica et Geodaetica, 60(2), 228-247.
  • Zingerle, P., Pail, R., Gruber, T., Oikonomidou, X. 2020. The combined global gravity field model XGM2019e. Journal of Geodesy, 94(7).
  • Lam, C.K., Yarger, H.L. 1989. State gravity map of Kansas, Kansas Geological Survey. Bulletin, 226, 185-196.
  • Hahn, R.K. 1980. Upper mantle velocity structure in eastern Kansas from teleseismic P-wave residuals: M. S. thesis, Department of Geology, University of Kansas, 85.
  • Yarger, H.L. 1980. Aeromagnetic analysis of the Keweenawan rift in Kansas, EOS, American Geophysical Union, Transactions, 61, 48, 1,192.
  • Bucha, B., Janák, J. 2013. A MATLAB-based graphical user interface program for computing functionals of the geopotential up to ultra-high degrees and orders, Computers and Geosciences, 56, 186-196.
  • Brockmann, J.M., Zehentner, N., Höck, E., Pail, R., Loth, I., Mayer-Gürr, T., Schuh, W.D. 2014. EGM_TIM_RL05: an independent geoid with centimeter accuracy purely based on the GOCE mission, Geophysical Research Letters, 41(22), 8089-8099.
  • Bruinsma, S.L., Förste, C., Abrikosov, O., Lemoine, J.M., Marty, J.C., Mulet, S., ... and Bonvalot, S. 2014. ESA's satellite only gravity field model via the direct approach based on all GOCE data, Geophysical Research Letters, 41(21), 7508-7514.
  • Bruinsma, S.L., Förste, C., Abrikosov, O., Marty, J. C., Rio, M.H., Mulet, S. and Bonvalot, S. 2013. The new ESA satellite only gravity field model via the direct approach, Geophysical Research Letters, 40(14), 3607-3612.
  • Pail, R., Bruinsma, S., Migliaccio, F., Förste, C., Goiginger, H., Schuh, W.D., ... and Veicherts, M. 2011. First GOCE gravity field models derived by three different approaches, Journal of Geodesy, 85(11), 819.
  • Serpa, L., Setzer, T., Farmer, H., Brown, L., Oliver, J., Kaufman, S., ... and Steeples, D.W. 1984. Structure of the southern Keweenawan rift from COCORP surveys across the Midcontinent geophysical anomaly in northeastern Kansas, Tectonics, 3(3), 367-384.
  • Somanas, C., Knapp, R.W., Yarger, H.L., Steeples, D.W. 1989. Geophysical model of the Midcontinent Geophysical Anomaly in northeastern Kansas, Kansas Geological Survey Bulletin, 226, 215-228.
There are 34 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Fikret Doğru 0000-0002-6973-1157

Publication Date September 15, 2021
Published in Issue Year 2021

Cite

APA Doğru, F. (2021). Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(69), 835-844. https://doi.org/10.21205/deufmd.2021236911
AMA Doğru F. Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA. DEUFMD. September 2021;23(69):835-844. doi:10.21205/deufmd.2021236911
Chicago Doğru, Fikret. “Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 69 (September 2021): 835-44. https://doi.org/10.21205/deufmd.2021236911.
EndNote Doğru F (September 1, 2021) Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 69 835–844.
IEEE F. Doğru, “Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA”, DEUFMD, vol. 23, no. 69, pp. 835–844, 2021, doi: 10.21205/deufmd.2021236911.
ISNAD Doğru, Fikret. “Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/69 (September 2021), 835-844. https://doi.org/10.21205/deufmd.2021236911.
JAMA Doğru F. Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA. DEUFMD. 2021;23:835–844.
MLA Doğru, Fikret. “Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 69, 2021, pp. 835-44, doi:10.21205/deufmd.2021236911.
Vancouver Doğru F. Comparison of Recent and Former Satellite-Based Gravity Models: A Case Study of Kansas, USA. DEUFMD. 2021;23(69):835-44.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.