Research Article
BibTex RIS Cite

Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains

Year 2021, , 913 - 922, 15.09.2021
https://doi.org/10.21205/deufmd.2021236919

Abstract

Heavy-duty electric vehicle applications are becoming more popular in transportation, construction, and military applications because of the emission targets of several countries. Therefore, to obtain an efficient and clean heavy-duty electric vehicle, simulation of the powertrain is performed according to various vehicle weights and drive types for the determination of vehicle performance. In this study, the drive cycle simulation of a heavy-duty electric vehicle is performed by Matlab/Simulink for both wheeled and tracked drive alternatives. Battery power requirements and SOC (State of Charge) history are determined according to the drive cycle of HHDDT (Heavy Heavy-Duty Diesel Truck) Transient Mode and Cruise Mode for constant vehicle weight and battery capacity. On the other hand, the climbing potential of vehicles is calculated during the drive cycle. According to the results, the range of wheeled vehicle is found higher than that of the tracked versions, however, the climbing potential of the tracked vehicle is found more advantageous than that of the wheeled type.

References

  • [1] Khalil, G. 2009. Challenges of hybrid electric vehicles for military applications. IEEE Vehicle Power and Propulsion Conference, 7-10 September, Dearborn, MI, USA , 1-3.
  • [2] Feng, Y., Dong, Z., Yang, J., & Cheng, R. 2016. Performance modeling and cost-benefit analysis of hybrid electric mining trucks. 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 29-31 August, Auckland, New Zealand, 1-6.
  • [3] Verbruggen, F. J., Rangarajan, V., & Hofman, T. 2019. Powertrain design optimization for a battery electric heavy-duty truck. American Control Conference (ACC), 10-12 July, Philadelphia, PA, USA, 1488-1493.
  • [4] Hohl, G. H. 2007. Military terrain vehicles, Journal of Terramechanics, Volume 44, Issue 1, p. 23-34. DOI: 10.1016/j.jterra.2006.01.003
  • [5] Kast, J., Vijayagopal, R., Gangloff Jr, J. J., & Marcinkoski, J. 2017. Clean commercial transportation: Medium and heavy duty fuel cell electric trucks, International Journal of Hydrogen Energy, Volume. 42, Issue. 7, p. 4508-4517. DOI: 10.1016/j.ijhydene.2016.12.129.
  • [6] Awadallah, M., Tawadros, P., Walker, P., & Zhang, N. 2017. Dynamic modelling and simulation of a manual transmission based mild hybrid vehicle, Mechanism and Machine Theory, Volume. 112, p. 218-239. DOI:10.1016/j.mechmachtheory.2017.02.011
  • [7] Mashadi, B., and Crolla, D. 2012. 1st edition. Vehicle powertrain systems. Wiley, 115p.
  • [8] Mężyk, A., Czapla, T., & Klein, W. 2009. Hybrid drive application for high-speed tracked vehicle, Journal of KONES, Volume. 16, p. 341-349.
  • [9] Mallon, K. R., Assadian, F., & Fu, B. 2017. Analysis of on-board photovoltaics for a battery electric bus and their impact on battery lifespan, Energies, Volume. 10, Issue. 7, p.943. DOI: 10.3390/en10070943
  • [10] Bekker, M. G. 1956. Theory of Land Locomotion. University of Michigan Press. Ann Arbor, 530p.
  • [11] Wong, J. Y., & Chiang, C. F. 2001. A general theory for skid steering of tracked vehicles on firm ground. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Volume. 215, Issue. 3, p.343-355. DOI: 10.1243/0954407011525683
  • [12] Wong, J. Y. 2008. Theory of ground vehicles. 4th, completely revised and enlarged edition. John Wiley & Sons, 560p.
  • [13] Kitano, M., and M. Kuma, 1977. An analysis of horizontal plane motion of tracked vehicles. Journal of terramechanics. Volume. 14, Issue. 4, p.211-225. DOI: 10.1016/0022-4898(77)90035-0
  • [14] Muralidhar, N., Himabindu, M., & Ravikrishna, R. V. 2018. Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator. Energy, 148, 1046-1059. DOI: 10.1016/j.energy.2018.02.023
  • [15] Kim, D. M., Benoliel, P., Kim, D. K., Lee, T. H., Park, J. W., & Hong, J. P. 2019. Framework development of series hybrid powertrain design for heavy-duty vehicle considering driving conditions. IEEE Transactions on Vehicular Technology, Volume. 68(7), p. 6468-6480. DOI: 10.1109/TVT.2019.2914868
  • [16] Roth, D., Habermehl, C., Jacobs, G., Neumann, S., Juretzki, B., & Bayer, D. 2021. Optimization-based Component Sizing Method for Electrified Heavy-Duty Powertrain Concepts. In IOP Conference Series: Materials Science and Engineering, Volume. 1097, No. 1, p. 012002). DOI: 10.1088/1757-899X/1097/1/012002
  • [17] Karaoğlan, M. U., Kuralay, N. S., & Colpan, C. O. 2019. The effect of gear ratıos on the exhaust emıssıons and fuel consumptıon of a parallel hybrid vehicle powertrain. Journal of Cleaner Production, 210, 1033-1041. DOI:10.1016/j.jclepro.2018.11.065
  • [18] Gautam, M., Clark, N., Riddle, W., Nine, R., Wayne, W. S., Maldonado, H., & Carlock, M. 2002. Development and initial use of a heavy-duty diesel truck test schedule for emissions characterization. SAE Transactions, Volume. 111, p. 812-824. DOI: 10.4271/2002-01-1753
  • [19] Karaoğlan, M. U., & Kuralay, N. S. 2014. PEM YAKIT HÜCRESİ MODELİ. Engineer & the Machinery Magazine, Volume. 55, Issue. 657, p.51-58.

Tekerlekli ve Paletli Ağır Elektrikli Taşıt Tahrik Sisteminin Sürüş Çevrimi Simulasyonları

Year 2021, , 913 - 922, 15.09.2021
https://doi.org/10.21205/deufmd.2021236919

Abstract

Ağır hizmet tipi elektrikli araç uygulamaları, birçok ülkenin emisyon hedefleri nedeniyle ulaşım, inşaat ve askeri uygulamalarda daha popüler hale geliyor. Bu nedenle, verimli ve temiz bir ağır hizmet elektrikli araç elde etmek için, araç performansının belirlenmesi için çeşitli araç ağırlıklarına ve tahrik tiplerine göre güç aktarma bileşenlerinin simülasyonu yapılır. Bu çalışmada, ağır hizmet tipi bir elektrikli aracın sürüş çevrimi simülasyonu, hem tekerlekli hem de paletli tahrik alternatifleri için Matlab/Simulink ortamında gerçekleştirilmiştir. Batarya gücü gereksinimleri ve SOC (Şarj Durumu) geçmişi, sabit araç ağırlığı ve batarya kapasitesi için HHDDT (Ağır Ağır Hizmet Dizel Kamyon) Geçici Modu ve Seyir Modunun sürüş döngüsüne göre belirlenir. Öte yandan, sürüş çevrimi sırasında araçların yokuş çıkma kabiliyeti hesaplanır. Sonuçlara göre tekerlekli tipteki aracın menzili paletli tiptekine göre daha yüksek bulunurken, paletli aracın yokuş çıkma kabliyeti tekerlekli tipe göre daha avantajlı bulunmuştur.

References

  • [1] Khalil, G. 2009. Challenges of hybrid electric vehicles for military applications. IEEE Vehicle Power and Propulsion Conference, 7-10 September, Dearborn, MI, USA , 1-3.
  • [2] Feng, Y., Dong, Z., Yang, J., & Cheng, R. 2016. Performance modeling and cost-benefit analysis of hybrid electric mining trucks. 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), 29-31 August, Auckland, New Zealand, 1-6.
  • [3] Verbruggen, F. J., Rangarajan, V., & Hofman, T. 2019. Powertrain design optimization for a battery electric heavy-duty truck. American Control Conference (ACC), 10-12 July, Philadelphia, PA, USA, 1488-1493.
  • [4] Hohl, G. H. 2007. Military terrain vehicles, Journal of Terramechanics, Volume 44, Issue 1, p. 23-34. DOI: 10.1016/j.jterra.2006.01.003
  • [5] Kast, J., Vijayagopal, R., Gangloff Jr, J. J., & Marcinkoski, J. 2017. Clean commercial transportation: Medium and heavy duty fuel cell electric trucks, International Journal of Hydrogen Energy, Volume. 42, Issue. 7, p. 4508-4517. DOI: 10.1016/j.ijhydene.2016.12.129.
  • [6] Awadallah, M., Tawadros, P., Walker, P., & Zhang, N. 2017. Dynamic modelling and simulation of a manual transmission based mild hybrid vehicle, Mechanism and Machine Theory, Volume. 112, p. 218-239. DOI:10.1016/j.mechmachtheory.2017.02.011
  • [7] Mashadi, B., and Crolla, D. 2012. 1st edition. Vehicle powertrain systems. Wiley, 115p.
  • [8] Mężyk, A., Czapla, T., & Klein, W. 2009. Hybrid drive application for high-speed tracked vehicle, Journal of KONES, Volume. 16, p. 341-349.
  • [9] Mallon, K. R., Assadian, F., & Fu, B. 2017. Analysis of on-board photovoltaics for a battery electric bus and their impact on battery lifespan, Energies, Volume. 10, Issue. 7, p.943. DOI: 10.3390/en10070943
  • [10] Bekker, M. G. 1956. Theory of Land Locomotion. University of Michigan Press. Ann Arbor, 530p.
  • [11] Wong, J. Y., & Chiang, C. F. 2001. A general theory for skid steering of tracked vehicles on firm ground. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, Volume. 215, Issue. 3, p.343-355. DOI: 10.1243/0954407011525683
  • [12] Wong, J. Y. 2008. Theory of ground vehicles. 4th, completely revised and enlarged edition. John Wiley & Sons, 560p.
  • [13] Kitano, M., and M. Kuma, 1977. An analysis of horizontal plane motion of tracked vehicles. Journal of terramechanics. Volume. 14, Issue. 4, p.211-225. DOI: 10.1016/0022-4898(77)90035-0
  • [14] Muralidhar, N., Himabindu, M., & Ravikrishna, R. V. 2018. Modeling of a hybrid electric heavy duty vehicle to assess energy recovery using a thermoelectric generator. Energy, 148, 1046-1059. DOI: 10.1016/j.energy.2018.02.023
  • [15] Kim, D. M., Benoliel, P., Kim, D. K., Lee, T. H., Park, J. W., & Hong, J. P. 2019. Framework development of series hybrid powertrain design for heavy-duty vehicle considering driving conditions. IEEE Transactions on Vehicular Technology, Volume. 68(7), p. 6468-6480. DOI: 10.1109/TVT.2019.2914868
  • [16] Roth, D., Habermehl, C., Jacobs, G., Neumann, S., Juretzki, B., & Bayer, D. 2021. Optimization-based Component Sizing Method for Electrified Heavy-Duty Powertrain Concepts. In IOP Conference Series: Materials Science and Engineering, Volume. 1097, No. 1, p. 012002). DOI: 10.1088/1757-899X/1097/1/012002
  • [17] Karaoğlan, M. U., Kuralay, N. S., & Colpan, C. O. 2019. The effect of gear ratıos on the exhaust emıssıons and fuel consumptıon of a parallel hybrid vehicle powertrain. Journal of Cleaner Production, 210, 1033-1041. DOI:10.1016/j.jclepro.2018.11.065
  • [18] Gautam, M., Clark, N., Riddle, W., Nine, R., Wayne, W. S., Maldonado, H., & Carlock, M. 2002. Development and initial use of a heavy-duty diesel truck test schedule for emissions characterization. SAE Transactions, Volume. 111, p. 812-824. DOI: 10.4271/2002-01-1753
  • [19] Karaoğlan, M. U., & Kuralay, N. S. 2014. PEM YAKIT HÜCRESİ MODELİ. Engineer & the Machinery Magazine, Volume. 55, Issue. 657, p.51-58.
There are 19 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Eda Alpaslan This is me 0000-0002-1956-2762

Mustafa Karaoğlan 0000-0002-3780-3451

Can Çolpan 0000-0003-0855-3147

Publication Date September 15, 2021
Published in Issue Year 2021

Cite

APA Alpaslan, E., Karaoğlan, M., & Çolpan, C. (2021). Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(69), 913-922. https://doi.org/10.21205/deufmd.2021236919
AMA Alpaslan E, Karaoğlan M, Çolpan C. Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains. DEUFMD. September 2021;23(69):913-922. doi:10.21205/deufmd.2021236919
Chicago Alpaslan, Eda, Mustafa Karaoğlan, and Can Çolpan. “Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 69 (September 2021): 913-22. https://doi.org/10.21205/deufmd.2021236919.
EndNote Alpaslan E, Karaoğlan M, Çolpan C (September 1, 2021) Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 69 913–922.
IEEE E. Alpaslan, M. Karaoğlan, and C. Çolpan, “Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains”, DEUFMD, vol. 23, no. 69, pp. 913–922, 2021, doi: 10.21205/deufmd.2021236919.
ISNAD Alpaslan, Eda et al. “Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/69 (September 2021), 913-922. https://doi.org/10.21205/deufmd.2021236919.
JAMA Alpaslan E, Karaoğlan M, Çolpan C. Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains. DEUFMD. 2021;23:913–922.
MLA Alpaslan, Eda et al. “Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 69, 2021, pp. 913-22, doi:10.21205/deufmd.2021236919.
Vancouver Alpaslan E, Karaoğlan M, Çolpan C. Drive Cycle Simulations of Wheeled and Tracked Heavy-Duty Electric Vehicle Powertrains. DEUFMD. 2021;23(69):913-22.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.