Yapay zeka gibi teknolojik yenilikler, geliştiricilerin niyetlerinden bağımsız olarak toplumda mevcut olan ön yargıyı arttırabilirler. Bu sebeple, araştırmacılar geliştirilen bir ürün/çözüm ile birlikte gelebilecek etik sorunların farkında olmalıdırlar. Bu çalışmada, sosyal ön yargılardan biri olan cinsiyet yanlılığının meslek sınıflandırması üzerindeki etkisi araştırılmaktadır. Bunun için New York Times web sitesinden anma yazıları toplanarak yeni bir veri kümesi oluşturulmuş ve bu anma yazıları cinsiyet göstergeleri dahil ve hariç olmak üzere iki farklı versiyonuyla sunulmuştur. Bu veri kümesindeki sınıf dağılışları incelendiğinde cinsiyet ve meslek değişkenleri arasında bir bağımlılık ilişkisi görülmektedir. Dolayısıyla cinsiyet göstergelerinin meslek tahmini üzerinde bir etkisi olması beklenmektedir. Bu etkiyi sınamak üzere, SVM (Karar Destek Makineleri), HAN (Hiyerarşik İlgi Ağı) ve DistilBERT algoritmaları kullanılarak meslek sınıflandırması yapılmıştır. Sadece meslek sınıflandırması yapan bu modellerin yanında meslek ve cinsiyetin eş zamanlı öğrenildiği bir model de değerlendirilmiştir. Deneysel sonuçlar, meslek tahmininde cinsiyet yanlılığının etkili olduğunu ortaya koymaktadır.
Technological developments such as artificial intelligence can strengthen social prejudices prevailing in society, regardless of the developer's intention. Therefore, researchers should be aware of the ethical issues that may arise from a developed product/solution. In this study, we investigate the effect of gender bias on occupational classification. For this purpose, a new dataset was created by collecting obituaries from the New York Times website and is provided in two different versions: With and without gender indicators. Category distributions from this dataset show that gender and occupation variables have dependence. Thus, gender affects occupation classification. To test the effect, we perform occupation classification using SVM (Support Vector Machine), HAN (Hierarchical Attention Network), and DistilBERT-based classifiers. Moreover, to get further insights into the relationship of gender and occupation in classification problems, a multi-tasking model in which occupation and gender are learned together is evaluated. Experimental results reveal that there is a gender bias in job classification.
Primary Language | English |
---|---|
Subjects | Engineering |
Journal Section | Research Article |
Authors | |
Publication Date | May 16, 2022 |
Published in Issue | Year 2022 |
Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.