Research Article
BibTex RIS Cite

Dokuz-Boyutlu Lorenz Sisteminin Sayısal Çözümleri

Year 2022, , 213 - 219, 17.01.2022
https://doi.org/10.21205/deufmd.2022247020

Abstract

Bu çalışmada, Taylor Ayrıştırma yönteminin dokuz boyutlu Lorenz sistemi üzerindeki performansı araştırılmıştır. Önerilen yöntem, hem kaotik hem de hiperkaotik durumları için dokuz boyutlu Lorenz sistemine uygulanmıştır. Problemin faz portreleri ve zaman serisi grafikleri çizilmiştir. Elde edilen sonuçlar hem dördüncü mertebe Runge-Kutta yöntemi hem de çok bölgeli kompakt sonlu farklar esnetme yöntemi ile karşılaştırılmıştır. Karşılaştırmalar, elde edilen sonuçların diğer yöntemlerin sonuçlarıyla tutarlı olduğunu göstermiştir. Böylece dokuz boyutlu Lorenz sistemi kullanılarak doğrusal olmayan sistemler için yöntemin doğruluğu ve etkinliği vurgulanmıştır.

References

  • [1] Lorenz, E. 1963. Deterministic nonperiodic flow, J. Atmos. Sci., Vol. 20, No. 2 pp. 130-141. DOI: 10.1007/978-0-387-21830-4_2.
  • [2] Reitere P., Lainscsek, C.,Schuerrer F., Maquet J. 1998. A nine-dimensional Lorenz system to study high dimensional chaos, J. Phys. A: Math. Gen, Vol. 31, pp. 7121-7139. DOI: 10.1088/0305-4470/31/34/015.
  • [3] Kouagou J.N., Dlamini,P. G., Simelane S. M. 2020. On the multi-domain compact finite difference relaxation method for high dimensional chaos: The nine-dimensional Lorenz system, Alexandria Engineering Journal, Vol. 59, pp. 2617-2625. DOI: 10.1016/j.aej.2020.04.025.
  • [4] Mahmoud, E. E., Higazy, M., Al-Harthi, T. M. 2019. A new nine-dimensional chaotic Lorenz system with quaternion Variables: Complicated dynamics, electronic circuit design, anti-anticipating synchronization, and chaotic masking communication application, Mathematics, Vol. 7, pp. 877. DOI: 10.3390/math7100877.
  • [5] Dlamini, P., and Simelane, S. 2021. An Efficient Spectral Method-based Algorithm for Solving a‎ High-dimensional Chaotic Lorenz System, Journal of Applied and Computational Mechanics, Vol 7, pp. 225-234. DOI: 10.22055/JACM.2020.34364.2393.
  • [6] Shen, B. W., Reyes, T., Faghih-Naini, S. 2018. Coexistence of chaotic and non-chaotic orbits in a new nine-dimensional Lorenz model In Chaotic Modeling and Simulation International Conference, Springer, June, Cham, 239-255.
  • [7] Ashyralyev A. and Sobolevskii P. E. 2004. New Difference Schemes for Partial Differential Equations. ss 1-443. Springer Science & Business Media, Birkhauser, Basel.
  • [8] Adiyaman M. E. 2021. High Order Approach for Solving Chaotic and Hyperchaotic Problems, Hacettepe Journal of Mathematics and Statistics, article in rewiev.
  • [9] Adiyaman M. E. and Somali S. 2010. Taylor’s Decomposition on two points for one-dimensional Bratu problem, Numer. Methods Partial Differential Eq., Vol. 26, pp. 412-425. DOI: 10.1002/num.20443.
  • [10] Adiyaman M. E. and Somali S. 2012. A new approach for linear eigenvalue problems and nonlinear Euler buckling problem, Abstract and Applied Analysis, Vol. 2012, Article ID 697013.

Numerical Solutions of Nine-Dimensional Lorenz System

Year 2022, , 213 - 219, 17.01.2022
https://doi.org/10.21205/deufmd.2022247020

Abstract

In this study, the performance of the Taylor’s decomposition method in the nine-dimensional Lorenz system is investigated. The proposed method is applied to the nine-dimensional Lorenz system for both chaotic and hyperchaotic cases. Phase portraits and time series graphs of the problem are drawn. The results obtained are compared with both the fourth order Runge-Kutta method and multi-domain compact finite difference relaxation method. Comparisons show that the obtained results are consistent with the results of other methods. Thus, the accuracy and efficiency of the method for nonlinear systems were emphasized by using the nine-dimensional Lorenz system.

References

  • [1] Lorenz, E. 1963. Deterministic nonperiodic flow, J. Atmos. Sci., Vol. 20, No. 2 pp. 130-141. DOI: 10.1007/978-0-387-21830-4_2.
  • [2] Reitere P., Lainscsek, C.,Schuerrer F., Maquet J. 1998. A nine-dimensional Lorenz system to study high dimensional chaos, J. Phys. A: Math. Gen, Vol. 31, pp. 7121-7139. DOI: 10.1088/0305-4470/31/34/015.
  • [3] Kouagou J.N., Dlamini,P. G., Simelane S. M. 2020. On the multi-domain compact finite difference relaxation method for high dimensional chaos: The nine-dimensional Lorenz system, Alexandria Engineering Journal, Vol. 59, pp. 2617-2625. DOI: 10.1016/j.aej.2020.04.025.
  • [4] Mahmoud, E. E., Higazy, M., Al-Harthi, T. M. 2019. A new nine-dimensional chaotic Lorenz system with quaternion Variables: Complicated dynamics, electronic circuit design, anti-anticipating synchronization, and chaotic masking communication application, Mathematics, Vol. 7, pp. 877. DOI: 10.3390/math7100877.
  • [5] Dlamini, P., and Simelane, S. 2021. An Efficient Spectral Method-based Algorithm for Solving a‎ High-dimensional Chaotic Lorenz System, Journal of Applied and Computational Mechanics, Vol 7, pp. 225-234. DOI: 10.22055/JACM.2020.34364.2393.
  • [6] Shen, B. W., Reyes, T., Faghih-Naini, S. 2018. Coexistence of chaotic and non-chaotic orbits in a new nine-dimensional Lorenz model In Chaotic Modeling and Simulation International Conference, Springer, June, Cham, 239-255.
  • [7] Ashyralyev A. and Sobolevskii P. E. 2004. New Difference Schemes for Partial Differential Equations. ss 1-443. Springer Science & Business Media, Birkhauser, Basel.
  • [8] Adiyaman M. E. 2021. High Order Approach for Solving Chaotic and Hyperchaotic Problems, Hacettepe Journal of Mathematics and Statistics, article in rewiev.
  • [9] Adiyaman M. E. and Somali S. 2010. Taylor’s Decomposition on two points for one-dimensional Bratu problem, Numer. Methods Partial Differential Eq., Vol. 26, pp. 412-425. DOI: 10.1002/num.20443.
  • [10] Adiyaman M. E. and Somali S. 2012. A new approach for linear eigenvalue problems and nonlinear Euler buckling problem, Abstract and Applied Analysis, Vol. 2012, Article ID 697013.
There are 10 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Meltem Adıyaman 0000-0001-5065-7068

Publication Date January 17, 2022
Published in Issue Year 2022

Cite

APA Adıyaman, M. (2022). Numerical Solutions of Nine-Dimensional Lorenz System. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(70), 213-219. https://doi.org/10.21205/deufmd.2022247020
AMA Adıyaman M. Numerical Solutions of Nine-Dimensional Lorenz System. DEUFMD. January 2022;24(70):213-219. doi:10.21205/deufmd.2022247020
Chicago Adıyaman, Meltem. “Numerical Solutions of Nine-Dimensional Lorenz System”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, no. 70 (January 2022): 213-19. https://doi.org/10.21205/deufmd.2022247020.
EndNote Adıyaman M (January 1, 2022) Numerical Solutions of Nine-Dimensional Lorenz System. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 70 213–219.
IEEE M. Adıyaman, “Numerical Solutions of Nine-Dimensional Lorenz System”, DEUFMD, vol. 24, no. 70, pp. 213–219, 2022, doi: 10.21205/deufmd.2022247020.
ISNAD Adıyaman, Meltem. “Numerical Solutions of Nine-Dimensional Lorenz System”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/70 (January 2022), 213-219. https://doi.org/10.21205/deufmd.2022247020.
JAMA Adıyaman M. Numerical Solutions of Nine-Dimensional Lorenz System. DEUFMD. 2022;24:213–219.
MLA Adıyaman, Meltem. “Numerical Solutions of Nine-Dimensional Lorenz System”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 24, no. 70, 2022, pp. 213-9, doi:10.21205/deufmd.2022247020.
Vancouver Adıyaman M. Numerical Solutions of Nine-Dimensional Lorenz System. DEUFMD. 2022;24(70):213-9.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.