Research Article
BibTex RIS Cite

Toprak Gazında Bir Toron Anomalisi: Büyükorhan, Bursa, Türkiye'den Bir Vaka Çalışması

Year 2022, , 157 - 164, 17.01.2022
https://doi.org/10.21205/deufmd.2022247015

Abstract

İnsanların maruz kaldıkları ana radyasyona kaynakları, kayalardan ve topraktan salınan radon, toron ve bunların bozunma ürünlerinin solunması ve yersel gama radyasyonudur. İnsanlar üzerindeki olası etkilerini tahmin etmek için, granitoyid biriminin geniş bir alanı kapladığı Bursa'nın güneyindeki Büyükorhan'da 18 farklı lokasyonda toprak gazındaki radon ve toron konsantrasyonları, yeraltı sularındaki radon ölçümleri ve dış mekan gama doz oranları ölçülmüştür. Toprak gazındaki radon konsantrasyonlarının 0,54 ± 0,01 kBq m−3 ile 36,25 ± 0,98 kBq m−3 (ortalama değer 11,54 ± 2,79 kBq m−3) arasında ve toron konsantrasyonlarının 14,86 ± 1,21 kBq m−3 ile 1462.50 ± 26.47 kBq m−3 (ortalama değer 174.53 ± 87.35 kBq m−3) arasında değiştiği bulunmuştur. Yeraltı suyu numunelerinde ölçülen radon konsantrasyonları 6.89 ± 1.11 Bq l-1 ile 61.43 ± 0.55 Bq l-1 (ortalama değer 24.85 ± 4.36 Bq l-1) arasında değişmektedir. Ölçülen dış mekan gama doz oranları ise 68 nGy h-1 ile 369 nGy h-1 (ortalama değer 129.7 nGy h-1) arasında değişmektedir. Bölgenin litolojisinin, toprak gazındaki radon ve toron konsantrasyonları üzerinde etkili olduğu görülmüştür. Ayrıca bu çalışmada, toprak gazındaki radon ve toron konsantrasyonlarının dış mekan gama doz oranları üzerindeki etkisi de belirtilmiştir.

References

  • [1] Unscear, 2000. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the effects of atomic radiation. Report to the General Assembly, with scientific annexes. United Nation, New York, USA
  • [2] Koarashi, J., Amano, H., Andoh, M, Iida, T. 2000. Estimation of 222Rn flux from ground surface based on the variation analysis of 222Rn concentration in a closed chamber, Radiation Protection Dosimetry, Vol. 87, pp. 121-131. DOI: 10.1093/oxfordjournals.rpd.a032984
  • [3] Örgün, Y., Altınsoy, N., Gültekin, A.H., Karahan, G., Çelebi, N. 2005. Natural radioactivity levels in granitic plutons and groundwaters in Southeast part of Eskisehir, Turkey, Applied Radiation and Isotopes, Vol. 63, pp. 267-275. DOI: 10.1016/j.apradiso.2005.03.008
  • [4] Örgün, Y., Altınsoy, N., Şahin, S.Y., Güngör, Y., Gültekin, A.H., Karahan, G., Karacık, Z. 2007. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey, Applied Radiation and Isotopes, Vol. 65, pp. 739-747. DOI: 10.1016/j.apradiso.2006.06.011
  • [5] Akkaya, G., Kaynak, G., Kahraman, A., Gurler, O. 2012. The Investigation of Radionuclide Distributions in Soil Samples Collected From Bursa, Turkey, Radiation Protection Dosimetry, Vol. 152(4), pp. 376-383. DOI: 10.1093/rpd/ncs075
  • [6] Swakoń, J., Kozak, K., Paszkowski, M., Gradziński, R., Łoskiewicz, J., Mazur, J., Janik, M., Bogacz, J., Horwacik, T., Olko, P. 2005. Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area, Journal of Environmental Radioactivity, Vol. 78, pp. 137-149. DOI: 10.1016/j.jenvrad.2004.04.004
  • [7] Zarroca, M., Linares, R., Bach, J., Roque´, C., Moreno, V., Font, L., Baixeras, C. 2012. Integrated geophysics and soil gas profiles as a tool to characterize active faults: the Amer fault example (Pyrenees, NE Spain), Environmental Earth Sciences, Vol. 67, pp. 889-910. DOI: 10.1007/s12665-012-1537-y
  • [8] Koray, A., Akkaya, G., Kahraman, A., Kaynak, G. 2014. Measurements of radon concentrations in waters and soil gas of Zonguldak, Turkey, Radiation Protection Dosimetry, Vol. 162(3), pp. 375–381. DOI: 10.1093/rpd/nct308
  • [9] Phuong, N.K., Harijoko, A., Itoi, R., Unoki, Y. 2012. Water geochemistry and soil gas survey at Ungaran geothermal field, central Java, Indonesia, Journal of Volcanology and Geothermal Research, Vol. 229-230, pp. 23–33. DOI: 10.1016/j.jvolgeores.2012.04.004
  • [10] Akerblom, G., Andersson, P., Clavensjö, B. 1984. Soil gas radon - a source for indoor radon, Radiation Protection Dosimetry, Vol. 7, pp. 49-54. DOI: 10.1093/oxfordjournals.rpd.a082961
  • [11] Kemski, J., Klingel, R., Siehl, A., Valdivia-Manchego, M. 2009. From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany, Environmental Geology, Vol. 56, pp. 1269–1279. DOI: 10.1007/s00254-008-1226-z
  • [12] Sainz-Fernandez, C., Fernandez-Villar, A., Fuente-Merino, I., Gutierrez-Villanueva, J. L., Martin-Matarranz, J. L., Garcia-Talavera, M., Casal-Ordas, S., Quindo´s-Poncela, L. S. 2014. The spanish indoor radon mapping strategy, Radiat. Prot. Dosim. 162(1–2), 58–62. DOI: 10.1093/rpd/ncu218
  • [13] Tollefsen, T., Cinelli, G., Bossew, P., Gruber V., De Cort M. 2014. From The European Indoor Radon Map Towards An Atlas Of Natural Radiation, Radiation Protection Dosimetry, Vol. 162(1–2), pp. 129–134. DOI: 10.1093/rpd/ncu244
  • [14] Cinti, D., Poncia, P.P., Procesi, M., Galli, G., Quattrocchi, F. 2013. Geostatistical techniques application to dissolved radon hazard mapping: An example from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (central Italy), Applied Geochemistry, Vol. 35, pp. 312-324. DOI: 10.1016/j.apgeochem.2013.05.005
  • [15] TAEK (Turkish Atomic Energy Authority) Technical Report, 2012. Kapalı Ortamlarda Radon Gazı, 2012/3.
  • [16] Neznal, M., Neznal, M., Matolìn, M., Barnet, I., Miksova, J. 2004. The new method for assessing the radon risk of building sites, Czech Geological Survey Special Papers, Prague.
  • [17] Roba, C.A., Codrea, V., Moldovan, M., Baciu, C., Cosma, C., 2010. Radon and radium content of some cold and thermal aquifers from Bihor County (northwestern Romania), Geofluids, Vol. 10, pp. 571-585. DOI: 10.1111/j.1468-8123.2010.00316.x
  • [18] Eisenlohr, L., Surbeck, H. 1995. Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura, Comptes Rendus de l'Académie des Sciences, Vol. 321(2a), pp. 761-767
  • [19] Erȍss, A., Mádl-Szȍnyi, J., Surbeck, H., Horváth, Á. , Goldscheider, N., Csoma, A.É. 2012. Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary, Journal of Hydrology, Vol. 426-427, pp. 124-137. DOI: 10.1016/j.jhydrol.2012.01.031
  • [20] Choubey, V. M., Mukherjee, P.K., Bajwa, B.S., Walia, V. 2007. Geological and tectonic influence on water–soil–radon relationship in Mandi–Manali area, Himachal Himalaya, Environmental Geology, Vol. 52, pp. 1163-1171. DOI: 10.1007/s00254-006-0553-1
  • [21] Lisenbee, A. L. 1972. Structural setting of the Orhaneli Ultramafic Massif near Bursa. The Pennsylvania State University, PhD Thesis, USA
  • [22] Ataman, G. 1972. Orhaneli Granodiyoritik Kütlesinin Radyometrik Yaşı, Bulletin of the Geological Society of Turkey, Vol. 15, pp. 125-130
  • [23] Harris, N. B. W., Kelley, S., Okay, A. I. 1994. Post-Collision Magmatism and Tectonics In Northwest Anatolia, Contributions to Mineralogy and Petrology, Vol. 117, pp. 241-252. DOI: 10.1007/BF00310866
  • [24] Okay, A. I., Harris, N. B. W., Kelley, S. P. 1998. Exhumation of blueschists along a Tethyan suture in northwest Turkey, Tectonophysics, Vol. 285, pp. 275-299. DOI: 10.1016/S0040-1951(97)00275-8
  • [25] Erginal, A. E., Ertek, A. 2008. Some geomorphological features of the orhaneli pluton: implications for denudation history, Bulletin of the Mineral Research and Exploration, Vol. 137, pp. 61-72
  • [26] Kalafatçıoğlu, A. 1964. Balıkesir Kütahya arasındaki bölgenin jeolojisi, Bulletin of the Geological Society of Turkey, Vol. 9, pp. 46-62
  • [27] Emre, H. 1986. Geology and Petrology of the Orhaneli ophiolite. Istanbul University, PhD thesis, Turkey
  • [28] Başol, B. 2009. Petrography of Northern Margin of Büyükorhan Granitoid and its Relationship with Country Rocks (West of Orhaneli, Bursa). İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, M Sc thesis, Turkey
  • [29] Akkaya, G., Kahraman, A., Koray, A., Kaynak, G. 2016. Variation in the radon concentrations and outdoor gamma radiation levels in relation to different geological formations in the thermal regions of Bursa, Turkey, Journal of Radiological Protection, Vol. 36(3), pp. 490-503. DOI: 10.1088/0952-4746/36/3/490
  • [30] Akkaya, G. 2011. The investigation of radionuclide distribution in soil samples collected from Bursa province. Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, PhD thesis, Turkey
  • [31] Papp, B., Szakács, A., Néda, T., Papp, Sz., Cosma, C. 2010. Soil radon and thoron studies near the mofettes at Harghita Bai (Romania) and their relation to the field location of fault zones, Geofluids, Vol. 10 (4), pp. 586–593. DOI: 10.1111/j.1468-8123.2010.00318.x
  • [32] Giammanco, S., Imme` G., Mangano G., Morelli D., Neri M. 2009. Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy), Applied Radiation and Isotopes, Vol. 67, pp. 178–185. DOI: 10.1016/j.apradiso.2008.09.007
  • [33] Schery, S. D. 1990. Thoron in the Environment, Journal of the Air & Waste Management Association, Vol. 40(4), pp. 493-497. DOI: 10.1080/10473289.1990.10466704

A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey

Year 2022, , 157 - 164, 17.01.2022
https://doi.org/10.21205/deufmd.2022247015

Abstract

The main sources of radiation exposure are the inhalation of radon, thoron and their decay products released from the rocks and soil, and terrestrial gamma radiation. In order to estimate the potential effects, the radon and thoron concentrations in the soil gas, the radon measurements in the groundwaters and outdoor gamma dose rates were measured at 18 different locations in Büyükorhan in the south of Bursa, which granitoid unit takes up a vast space in this area. The radon and thoron concentrations in the soil gas were found to vary from 0.54 ± 0.01 kBq m−3 to 36.25 ± 0.98 kBq m−3 (mean value 11.54 ± 2.79 kBq m−3) and from 14.86 ± 1.21 kBq m−3 to 1462.50 ± 26.47 kBq m−3 (mean value 174.53 ± 87.35 kBq m−3), respectively. The measured radon concentrations in the groundwater samples ranged from 6.89 ± 1.11 to 61.43 ± 0.55 Bq l-1 (mean value 24.85 ± 4.36 Bq l-1). The measured outdoor gamma dose rates varied from 68 nGy h-1 to 369 nGy h-1 (mean value 129.7 nGy h-1). It was observed that radon and thoron concentrations in the soil gas are controlled by the lithology of the region. Additionally, the effect of the radon and thoron concentration in soil gas on outdoor gamma dose rate is indicated in the present study.

References

  • [1] Unscear, 2000. Sources and Effects of Ionizing Radiation. United Nations Scientific Committee on the effects of atomic radiation. Report to the General Assembly, with scientific annexes. United Nation, New York, USA
  • [2] Koarashi, J., Amano, H., Andoh, M, Iida, T. 2000. Estimation of 222Rn flux from ground surface based on the variation analysis of 222Rn concentration in a closed chamber, Radiation Protection Dosimetry, Vol. 87, pp. 121-131. DOI: 10.1093/oxfordjournals.rpd.a032984
  • [3] Örgün, Y., Altınsoy, N., Gültekin, A.H., Karahan, G., Çelebi, N. 2005. Natural radioactivity levels in granitic plutons and groundwaters in Southeast part of Eskisehir, Turkey, Applied Radiation and Isotopes, Vol. 63, pp. 267-275. DOI: 10.1016/j.apradiso.2005.03.008
  • [4] Örgün, Y., Altınsoy, N., Şahin, S.Y., Güngör, Y., Gültekin, A.H., Karahan, G., Karacık, Z. 2007. Natural and anthropogenic radionuclides in rocks and beach sands from Ezine region (Çanakkale), Western Anatolia, Turkey, Applied Radiation and Isotopes, Vol. 65, pp. 739-747. DOI: 10.1016/j.apradiso.2006.06.011
  • [5] Akkaya, G., Kaynak, G., Kahraman, A., Gurler, O. 2012. The Investigation of Radionuclide Distributions in Soil Samples Collected From Bursa, Turkey, Radiation Protection Dosimetry, Vol. 152(4), pp. 376-383. DOI: 10.1093/rpd/ncs075
  • [6] Swakoń, J., Kozak, K., Paszkowski, M., Gradziński, R., Łoskiewicz, J., Mazur, J., Janik, M., Bogacz, J., Horwacik, T., Olko, P. 2005. Radon concentration in soil gas around local disjunctive tectonic zones in the Krakow area, Journal of Environmental Radioactivity, Vol. 78, pp. 137-149. DOI: 10.1016/j.jenvrad.2004.04.004
  • [7] Zarroca, M., Linares, R., Bach, J., Roque´, C., Moreno, V., Font, L., Baixeras, C. 2012. Integrated geophysics and soil gas profiles as a tool to characterize active faults: the Amer fault example (Pyrenees, NE Spain), Environmental Earth Sciences, Vol. 67, pp. 889-910. DOI: 10.1007/s12665-012-1537-y
  • [8] Koray, A., Akkaya, G., Kahraman, A., Kaynak, G. 2014. Measurements of radon concentrations in waters and soil gas of Zonguldak, Turkey, Radiation Protection Dosimetry, Vol. 162(3), pp. 375–381. DOI: 10.1093/rpd/nct308
  • [9] Phuong, N.K., Harijoko, A., Itoi, R., Unoki, Y. 2012. Water geochemistry and soil gas survey at Ungaran geothermal field, central Java, Indonesia, Journal of Volcanology and Geothermal Research, Vol. 229-230, pp. 23–33. DOI: 10.1016/j.jvolgeores.2012.04.004
  • [10] Akerblom, G., Andersson, P., Clavensjö, B. 1984. Soil gas radon - a source for indoor radon, Radiation Protection Dosimetry, Vol. 7, pp. 49-54. DOI: 10.1093/oxfordjournals.rpd.a082961
  • [11] Kemski, J., Klingel, R., Siehl, A., Valdivia-Manchego, M. 2009. From radon hazard to risk prediction-based on geological maps, soil gas and indoor measurements in Germany, Environmental Geology, Vol. 56, pp. 1269–1279. DOI: 10.1007/s00254-008-1226-z
  • [12] Sainz-Fernandez, C., Fernandez-Villar, A., Fuente-Merino, I., Gutierrez-Villanueva, J. L., Martin-Matarranz, J. L., Garcia-Talavera, M., Casal-Ordas, S., Quindo´s-Poncela, L. S. 2014. The spanish indoor radon mapping strategy, Radiat. Prot. Dosim. 162(1–2), 58–62. DOI: 10.1093/rpd/ncu218
  • [13] Tollefsen, T., Cinelli, G., Bossew, P., Gruber V., De Cort M. 2014. From The European Indoor Radon Map Towards An Atlas Of Natural Radiation, Radiation Protection Dosimetry, Vol. 162(1–2), pp. 129–134. DOI: 10.1093/rpd/ncu244
  • [14] Cinti, D., Poncia, P.P., Procesi, M., Galli, G., Quattrocchi, F. 2013. Geostatistical techniques application to dissolved radon hazard mapping: An example from the western sector of the Sabatini Volcanic District and the Tolfa Mountains (central Italy), Applied Geochemistry, Vol. 35, pp. 312-324. DOI: 10.1016/j.apgeochem.2013.05.005
  • [15] TAEK (Turkish Atomic Energy Authority) Technical Report, 2012. Kapalı Ortamlarda Radon Gazı, 2012/3.
  • [16] Neznal, M., Neznal, M., Matolìn, M., Barnet, I., Miksova, J. 2004. The new method for assessing the radon risk of building sites, Czech Geological Survey Special Papers, Prague.
  • [17] Roba, C.A., Codrea, V., Moldovan, M., Baciu, C., Cosma, C., 2010. Radon and radium content of some cold and thermal aquifers from Bihor County (northwestern Romania), Geofluids, Vol. 10, pp. 571-585. DOI: 10.1111/j.1468-8123.2010.00316.x
  • [18] Eisenlohr, L., Surbeck, H. 1995. Radon as a natural tracer to study transport processes in a karst system. An example in the Swiss Jura, Comptes Rendus de l'Académie des Sciences, Vol. 321(2a), pp. 761-767
  • [19] Erȍss, A., Mádl-Szȍnyi, J., Surbeck, H., Horváth, Á. , Goldscheider, N., Csoma, A.É. 2012. Radionuclides as natural tracers for the characterization of fluids in regional discharge areas, Buda Thermal Karst, Hungary, Journal of Hydrology, Vol. 426-427, pp. 124-137. DOI: 10.1016/j.jhydrol.2012.01.031
  • [20] Choubey, V. M., Mukherjee, P.K., Bajwa, B.S., Walia, V. 2007. Geological and tectonic influence on water–soil–radon relationship in Mandi–Manali area, Himachal Himalaya, Environmental Geology, Vol. 52, pp. 1163-1171. DOI: 10.1007/s00254-006-0553-1
  • [21] Lisenbee, A. L. 1972. Structural setting of the Orhaneli Ultramafic Massif near Bursa. The Pennsylvania State University, PhD Thesis, USA
  • [22] Ataman, G. 1972. Orhaneli Granodiyoritik Kütlesinin Radyometrik Yaşı, Bulletin of the Geological Society of Turkey, Vol. 15, pp. 125-130
  • [23] Harris, N. B. W., Kelley, S., Okay, A. I. 1994. Post-Collision Magmatism and Tectonics In Northwest Anatolia, Contributions to Mineralogy and Petrology, Vol. 117, pp. 241-252. DOI: 10.1007/BF00310866
  • [24] Okay, A. I., Harris, N. B. W., Kelley, S. P. 1998. Exhumation of blueschists along a Tethyan suture in northwest Turkey, Tectonophysics, Vol. 285, pp. 275-299. DOI: 10.1016/S0040-1951(97)00275-8
  • [25] Erginal, A. E., Ertek, A. 2008. Some geomorphological features of the orhaneli pluton: implications for denudation history, Bulletin of the Mineral Research and Exploration, Vol. 137, pp. 61-72
  • [26] Kalafatçıoğlu, A. 1964. Balıkesir Kütahya arasındaki bölgenin jeolojisi, Bulletin of the Geological Society of Turkey, Vol. 9, pp. 46-62
  • [27] Emre, H. 1986. Geology and Petrology of the Orhaneli ophiolite. Istanbul University, PhD thesis, Turkey
  • [28] Başol, B. 2009. Petrography of Northern Margin of Büyükorhan Granitoid and its Relationship with Country Rocks (West of Orhaneli, Bursa). İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, M Sc thesis, Turkey
  • [29] Akkaya, G., Kahraman, A., Koray, A., Kaynak, G. 2016. Variation in the radon concentrations and outdoor gamma radiation levels in relation to different geological formations in the thermal regions of Bursa, Turkey, Journal of Radiological Protection, Vol. 36(3), pp. 490-503. DOI: 10.1088/0952-4746/36/3/490
  • [30] Akkaya, G. 2011. The investigation of radionuclide distribution in soil samples collected from Bursa province. Bursa Uludağ Üniversitesi, Fen Bilimleri Enstitüsü, PhD thesis, Turkey
  • [31] Papp, B., Szakács, A., Néda, T., Papp, Sz., Cosma, C. 2010. Soil radon and thoron studies near the mofettes at Harghita Bai (Romania) and their relation to the field location of fault zones, Geofluids, Vol. 10 (4), pp. 586–593. DOI: 10.1111/j.1468-8123.2010.00318.x
  • [32] Giammanco, S., Imme` G., Mangano G., Morelli D., Neri M. 2009. Comparison between different methodologies for detecting radon in soil along an active fault: The case of the Pernicana fault system, Mt. Etna (Italy), Applied Radiation and Isotopes, Vol. 67, pp. 178–185. DOI: 10.1016/j.apradiso.2008.09.007
  • [33] Schery, S. D. 1990. Thoron in the Environment, Journal of the Air & Waste Management Association, Vol. 40(4), pp. 493-497. DOI: 10.1080/10473289.1990.10466704
There are 33 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Gizem Akkaya 0000-0002-6573-2101

Publication Date January 17, 2022
Published in Issue Year 2022

Cite

APA Akkaya, G. (2022). A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(70), 157-164. https://doi.org/10.21205/deufmd.2022247015
AMA Akkaya G. A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey. DEUFMD. January 2022;24(70):157-164. doi:10.21205/deufmd.2022247015
Chicago Akkaya, Gizem. “A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, no. 70 (January 2022): 157-64. https://doi.org/10.21205/deufmd.2022247015.
EndNote Akkaya G (January 1, 2022) A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 70 157–164.
IEEE G. Akkaya, “A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey”, DEUFMD, vol. 24, no. 70, pp. 157–164, 2022, doi: 10.21205/deufmd.2022247015.
ISNAD Akkaya, Gizem. “A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/70 (January 2022), 157-164. https://doi.org/10.21205/deufmd.2022247015.
JAMA Akkaya G. A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey. DEUFMD. 2022;24:157–164.
MLA Akkaya, Gizem. “A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 24, no. 70, 2022, pp. 157-64, doi:10.21205/deufmd.2022247015.
Vancouver Akkaya G. A Thoron Anomaly in the Soil Gas: A Case Study From Büyükorhan, Bursa, Turkey. DEUFMD. 2022;24(70):157-64.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.