Effect of Chloride Salt Ions onto Coal Flotation based on Contact Angle and Bubble-Particle Attachment Time
Year 2022,
, 553 - 562, 16.05.2022
Can Güngören
,
Yasin Baktarhan
,
Oktay Şahpaz
,
İlgin Kurşun Ünver
,
Şafak Gökhan Özkan
,
Orhan Özdemir
Abstract
This study was aimed to reveal the effect of K+, Na+, Ca2+, and Mg2+ ions on the bubble-particle interactions of high-rank coal with contact angle and bubble-particle attachment time studies. The results for the contact angle experiments indicated that the contact angle of the coal, which was 62° in the absence of ions, increased slightly in the presence of mono- and divalent ions and reached a maximum (67°) in the presence of 1∙10-1 mol/dm3 Mg2+, and the effect of K+ ions on the contact angle was minimal. Furthermore, the results for the bubble-particle attachment time experiments showed that the bubble-particle attachment time of coal, which was measured as 4.5 ms in the absence of ions, decreased as a function of ion concentration from 1∙10-2 mol/dm3 to 1 mol/dm3. While the bubble-particle attachment times of coal particles in the presence of K+/Na+ and Ca2+/Mg2+ at low concentrations were around 2-3 ms and 1-2 ms, respectively, the increase in the concentration slightly changed the attachment time which decreased to less than 1 ms except for K+ ions. Overall, it can be concluded from this study that the effect of these dissolved ions in water was more prominent on the bubble-particle attachment time of the coal particles rather than the contact angle which showed no significant change. Also, the specific ion effect was determined as “Mg2+ > Ca2+ > Na+ > K+” in terms of the bubble-particle interactions in the presence of these ions.
References
- Xia, Y., Zhang, R., Cao, Y., Xing, Y., Gui, X. 2020. Role of Molecular Simulation in Understanding the Mechanism of Low-Rank Coal Flotation: A Review, Fuel, Vol. 262, 116535. DOI: 10.1016/j.fuel.2019.116535
- Laskowski, J.S. 2001. Coal flotation and fine coal utilization. Elsevier, Amsterdam, The Netherlands, 368p.
- Gungoren, C., Guven, O., Cinar, M., Ozdemir, O. 2019. An Investigation of the Effect of Clay Type on Coal Flotation Along with DLVO Theoretical Analyses, International Journal of Coal Preparation and Utilization, Vol., 1-13. DOI: 10.1080/19392699.2019.1603146
- Gungoren, C. 2019. An Investigation of Air/Water Interface in Mixed Aqueous Solutions of KCl, NaCl, and DAH, Physicochemical Problems of Mineral Processing, Vol. 55, 1259-1270. DOI: 10.5277/ppmp19050
- Bournival, G., Ata, S. 2021. An Evaluation of the Australian Coal Flotation Standards, Minerals, Vol. 11. DOI: 10.3390/min11060550
- An, M., Liao, Y., Cao, Y., Hao, X., Ma, L. 2021. Improving Low Rank Coal Flotation Using a Mixture of Oleic Acid and Dodecane as Collector: A New Perspective on Synergetic Effect, Processes, Vol. 9. DOI: 10.3390/pr9030404
- Hancer, M., Celik, M.S., Miller, J.D. 2001. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems, Journal of Colloid and Interface Science, Vol. 235, 150-161. DOI: 10.1006/jcis.2000.7350
- Ozdemir, O., Celik, M.S., Nickolov, Z.S., Miller, J.D. 2007. Water Structure and Its Influence on the Flotation of Carbonate and Bicarbonate Salts, Journal of Colloid and Interface Science, Vol. 314, 545-51. DOI: 10.1016/j.jcis.2007.05.086
- Ozdemir, O., Karaguzel, C., Nguyen, A.V., Celik, M.S., Miller, J.D. 2009. Contact Angle and Bubble Attachment Studies in the Flotation of Trona and Other Soluble Carbonate Salts, Minerals Engineering, Vol. 22, 168-175. DOI: 10.1016/j.mineng.2008.06.001
- Ozdemir, O., Ersoy, O.F., Guven, O., Turgut, H., Cinar, M., Celik, M.S. 2018. Improved Flotation of Heat Treated Lignite with Saline Solutions Containing Mono and Multivalent Ions, Physicochemical Problems of Mineral Processing, Vol. 54, 1070-1082. DOI: 10.5277/ppmp18118
- Celik, M.S., Hancer, M., Miller, J.D. 2002. Flotation Chemistry of Boron Minerals, Journal of Colloid and Interface Science, Vol. 256, 121-131. DOI: 10.1006/jcis.2001.8138
- Yoon, R.H., Sabey, J.B. 1982. Coal Flotation in Inorganic Salt Solutions. USA.
- Laskowski, J.S. 1994. Coal Surface Chemistry and Its Role in Fine Coal Beneficiation and Utilization, Coal Preparation, Vol. 14, 115-131. DOI: 10.1080/07349349408905229
- Aplan, F.F. 1993. Gaudin Lecture: Coal Properties Dictate Coal Flotation Strategies, Mining Engineering, Vol. 45, 83-96.
- Ozdemir, O., Cinku, K., Uslu, T., Kılıc, E., Celik, M.S. 2013. Flotation Behavior of Bituminous and Lignite Coals in Salty Water (in Turkish), Afyon Kocatepe University Journal of Sciences and Engineering, Vol. 13, 1-14. DOI: 10.5578/fmbd.5218
- Ozkan, A., Ilikay, I.S., Esmeli, K. 2019. Lignite Flotation in Inorganic Salt Solutions, International Journal of Coal Preparation and Utilization, DOI: 10.1080/19392699.2019.1700959
- Klassen, V.I., Mokrousov, V.A. 1963. An Introduction to the Theory of Flotation., Butterworths, London, 493p.
- Paulson, O., Pugh, R.J. 1996. Flotation of Inherently Hydrophobic Particles in Aqueous Solutions of Inorganic Electrolytes, Langmuir, Vol. 12, 4808-4813. DOI: 10.1021/la960128n
- Harvey, P.A., Nguyen, A.V., Evans, G.M. 2002. Influence of Electrical Double-Layer Interaction on Coal Flotation, Journal of Colloid and Interface Science, Vol. 250, 337-43. DOI: 10.1006/jcis.2002.8367
- Ozdemir, O., Taran, E., Hampton, M.A., Karakashev, S.I., Nguyen, A.V. 2009. Surface Chemistry Aspects of Coal Flotation in Bore Water, International Journal of Mineral Processing, Vol. 92, 177-183. DOI: 10.1016/j.minpro.2009.04.001
- Albijanic, B., Ozdemir, O., Nguyen, A.V., Bradshaw, D. 2010. A Review of Induction and Attachment Times of Wetting Thin Films between Air Bubbles and Particles and Its Relevance in the Separation of Particles by Flotation, Advances in Colloid and Interface Science, Vol. 159, 1-21. DOI: 10.1016/j.cis.2010.04.003
- Ozdemir, O., Du, H., Karakashev, S.I., Nguyen, A.V., Celik, M.S., Miller, J.D. 2011. Understanding the Role of Ion Interactions in Soluble Salt Flotation with Alkylammonium and Alkylsulfate Collectors, Advances in Colloid and Interface Science, Vol. 163, 1-22. DOI: 10.1016/j.cis.2011.01.003
- Ren, H., Liao, Y., Yang, Z., An, M., Hao, X., Song, X., Liu, Z. 2021. Effect of Fe2+ on Low Rank Coal Flotation Using Oleic Acid as Collector, Powder Technology, Vol. 393, 250-256. DOI: 10.1016/j.powtec.2021.07.078
- Miller, J.D., Laskowski, J.S., Chang, S.S. 1983. Dextrin Adsorption by Oxidized Coal, Colloids and Surfaces, Vol. 8, 137-151. DOI: 10.1016/0166-6622(83)80081-X.
- Gungoren, C., Ozdemir, O., Wang, X., Ozkan, S.G., Miller, J.D. 2019. Effect of Ultrasound on Bubble-Particle Interaction in Quartz-Amine Flotation System, Ultrasonics Sonochemistry, Vol. 52, 446-454. DOI: 10.1016/j.ultsonch.2018.12.023
- Laskowski, J., Iskra, J. 1970. Role of Capillary Effects in Bubble-Particle Collision in Flotation, The Institution of Mining and Metallurgy Section C, Vol. 79, C6–C10.
- Bournival, G., Zhang, F., Ata, S. 2019. Coal Flotation in Saline Water: Effects of Electrolytes on Interfaces and Industrial Practice, Mineral Processing and Extractive Metallurgy Review, Vol. 42, 53-73. DOI: 10.1080/08827508.2019.1654474
- Sun, X., Zhang, L., Xie, Z., Li, B., Liu, S. 2021. Improvement of Low‐Rank Coal Flotation Based on the Enhancement of Wettability Difference between Organic Matter and Gangue, Journal of Surfactants and Detergents, Vol. 24, 269-279. DOI: 10.1002/jsde.12482
- Huang, L., Song, S., Gu, G., Wang, Y. 2020. The Interaction between Cations in Saline Water and Calcium Bentonite in Copper Flotation, Mining, Metallurgy & Exploration, Vol. 38, 693-699. DOI: 10.1007/s42461-020-00297-4
- Bournival, G., Ata, S. 2021. The Impact of Water Salinity and Its Interaction with Flotation Reagents on the Quality of Coal Flotation Products, Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2021.129519
- Ozdemir, O. 2013. Specific Ion Effect of Chloride Salts on Collectorless Flotation of Coal, Physicochemical Problems of Mineral Processing, Vol. 49, 511-524. DOI: 10.5277/ppmp130212
- Li, C., Somasundaran, P. 1993. Role of Electrical Double Layer Forces and Hydrophobicity in Coal Flotation in NaCl Solutions, Energy & Fuels, Vol. 7, 244-248.
- Kurniawan, A.U., Ozdemir, O., Nguyen, A.V., Ofori, P., Firth, B. 2011. Flotation of Coal Particles in MgCl2, NaCl, and NaClO3 Solutions in the Absence and Presence of Dowfroth 250, International Journal of Mineral Processing, Vol. 98, 137-144. DOI: 10.1016/j.minpro.2010.11.003
- Tao, D. 2005. Role of Bubble Size in Flotation of Coarse and Fine Particles—a Review, Separation Science and Technology Vol. 39, 741-760. DOI: 10.1081/ss-120028444
- Bournival, G., Pugh, R.J., Ata, S. 2012. Examination of NaCl and MIBC as Bubble Coalescence Inhibitor in Relation to Froth Flotation, Minerals Engineering, Vol. 25, 47-53. DOI: 10.1016/j.mineng.2011.10.008
- Ata, S. 2008. Coalescence of Bubbles Covered by Particles, Langmuir, Vol. 24, 6085-6091. DOI: 10.1021/la800466x
- Ata, S. 2009. The Detachment of Particles from Coalescing Bubble Pairs, Journal of Colloid and Interface Science, Vol. 338, 558-65. DOI: 10.1016/j.jcis.2009.07.003
- Bournival, G., Du, Z., Ata, S., Jameson, G.J. 2014. Foaming and Gas Dispersion Properties of Non-Ionic Frothers in the Presence of Hydrophobized Submicron Particles, International Journal of Mineral Processing, Vol. 133, 123-131. DOI: 10.1016/j.minpro.2014.08.010
- Orvalho, S., Ruzicka, M.C., Olivieri, G., Marzocchella, A. 2015. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity, Chemical Engineering Science, Vol. 134, 205-216. DOI: 10.1016/j.ces.2015.04.053
- Craig, V.S.J. 2004. Bubble Coalescence and Specific-Ion Effects, Current Opinion in Colloid & Interface Science, Vol. 9, 178-184. DOI: 10.1016/j.cocis.2004.06.002
- Tsang, Y.H., Koh, Y.H., Koch, D.L. 2004. Bubble-Size Dependence of the Critical Electrolyte Concentration for Inhibition of Coalescence, Journal of Colloid and Interface Science, Vol. 275, 290-7. DOI: 10.1016/j.jcis.2004.01.026
- Botello-Alvarez, J.E., Baz-Rodriguez, S.A., Gonzalez-Garcia, R., Estrada-Baltazar, A., Padilla-Medina, J.A., Alatorre, G.G., Navarrete-Bolanos, J.L.N. 2011. Effect of Electrolytes in Aqueous Solution on Bubble Size in Gas Liquid Bubble Columns, Industrial & Engineering Chemistry Research, Vol. 50, 12203-12207. DOI: 10.1021/ie200452q
- Quinn, J.J., Sovechles, J.M., Finch, J.A., Waters, K.E. 2014. Critical Coalescence Concentration of Inorganic Salt Solutions, Minerals Engineering, Vol. 58, 1-6. DOI: 10.1016/j.mineng.2013.12.021
- Nguyen, P.T., Hampton, M.A., Nguyen, A.V., Birkett, G.R. 2012. The Influence of Gas Velocity, Salt Type and Concentration on Transition Concentration for Bubble Coalescence Inhibition and Gas Holdup, Chemical Engineering Research and Design, Vol. 90, 33-39. DOI: 10.1016/j.cherd.2011.08.015
- Marucci, G., Nicodemo, L. 1967. Coalescence of Gas Bubbles in Aqueous Solutions of Inorganic Electrolytes, Chemical Engineering Science, Vol. 22, 1257–1265. DOI: 10.1016/0009-2509(67)80190-8
- Craig, V.S.J., Ninham, B.W., Pashley, R.M. 1993. Effect of Electrolytes on Bubble Coalescence, Nature, Vol. 364, 317-319. DOI: 10.1038/364317a0
- Craig, V.S.J., Ninham, B.W., Pashley, R.M. 1993. The Effect of Electrolytes on Bubble Coalescence in Water, The Journal of Physical Chemistry, 10192-10197. DOI: 10.1021/j100141a047
- Prince, M.J., Blanch, H.W. 1990. Transition Electrolyte Concentrations for Bubble Coalescence, AIChE Journal, Vol. 36, 1425-1429. DOI: 10.1002/aic.690360915
- Sadeghi, F., Vissers, A.J. 2020. Experimental Investigation of Bubble Size in Flotation: Effect of Salt, Coagulant, Temperature, and Organic Compound, SPE Production & Operations, DOI: 10.2118/200495-PA
- Li, C., Somasundaran , P. 1991. Reversal of Bubble Charge in Multivalent Inorganic Salt Solutions-Effect of Magnesium, Journal of Colloid and Interface Science, Vol. 146, 215-218. DOI: 10.1016/0021-9797(91)90018-4
- Craig, V.S.J. 2011. Do Hydration Forces Play a Role in Thin Film Drainage and Rupture Observed in Electrolyte Solutions?, Current Opinion in Colloid & Interface Science, Vol. 16, 597-600. DOI: 10.1016/j.cocis.2011.04.003
- Wu, Z., Wang, X., Liu, H., Zhang, H., Miller, J.D. 2016. Some Physicochemical Aspects of Water-Soluble Mineral Flotation, Advances in Colloid and Interface Science, Vol. 235, 190-200. DOI: 10.1016/j.cis.2016.06.005
- Wang, B., Peng, Y. 2014. The Effect of Saline Water on Mineral Flotation – a Critical Review, Minerals Engineering, Vol. 66-68, 13-24. DOI: 10.1016/j.mineng.2014.04.017
- Gungoren, C., Islek, E., Baktarhan, Y., Kurşun Unver, I., Ozdemir, O. 2018. A Novel Technique to Investigate the Bubble Coalescence in the Presence of Surfactant (MIBC) and Electrolytes (NaCl and CaCl2), Physicochemical Problems of Mineral Processing, Vol. 54, 1215-1222. DOI: 10.5277/ppmp18158
Klorür Tuz İyonlarının Temas Açısı ve Kabarcık-Tane Yapışma Süresi Açısından Kömür Flotasyonuna Etkisi
Year 2022,
, 553 - 562, 16.05.2022
Can Güngören
,
Yasin Baktarhan
,
Oktay Şahpaz
,
İlgin Kurşun Ünver
,
Şafak Gökhan Özkan
,
Orhan Özdemir
Abstract
Bu çalışma, K+, Na+, Ca+2 ve Mg+2 iyonlarının yüksek kaliteli kömürün kabarcık-tane etkileşimleri üzerindeki etkisini, temas açısı ve kabarcık-tane yapışma süresi çalışmaları ile ortaya koymayı amaçlamıştır. Temas açısı deney sonuçları, iyon yokluğunda 62° olan kömürün temas açısının, bir ve iki değerlikli iyonların varlığında hafifçe arttığını, 1∙10-1 mol/dm3 Mg+2 varlığında maksimuma (67°) ulaştığını ve K+ iyonunun temas açısı üzerindeki etkisinin minimum olduğunu göstermiştir. Ayrıca, kabarcık-tane yapışma süresi deney sonuçları, iyon yokluğunda 4,5 ms olarak ölçülen kömürün kabarcık-tane yapışma süresinin, iyon konsantrasyonunun bir fonksiyonu olarak 1∙10-2 mol/dm3 ile 1 mol/dm3 arasında azaldığını göstermiştir. K+/Na+ ve Ca+2/Mg+2 varlığında düşük konsantrasyonlarda kömür tanelerinin kabarcık-tane yapışma süreleri sırasıyla 2-3 ms ve 1-2 ms civarındayken, konsantrasyondaki artış yapışma süresini biraz değiştirmiş ve K+ iyonları hariç 1 ms’nin altına düşürmüştür. Genel olarak, bu çalışmadan, sudaki bu çözünmüş iyonların etkisinin önemli bir değişiklik göstermeyen temas açısından ziyade, kömür tanelerinin kabarcık-tane yapışma süresi üzerinde daha belirgin olduğu sonucuna varılabilir. Ayrıca bu iyonlar varlığında kabarcık-tane etkileşimleri açısından spesifik iyon etkisi “Mg+2 > Ca+2 > Na+ > K+” olarak belirlenmiştir.
References
- Xia, Y., Zhang, R., Cao, Y., Xing, Y., Gui, X. 2020. Role of Molecular Simulation in Understanding the Mechanism of Low-Rank Coal Flotation: A Review, Fuel, Vol. 262, 116535. DOI: 10.1016/j.fuel.2019.116535
- Laskowski, J.S. 2001. Coal flotation and fine coal utilization. Elsevier, Amsterdam, The Netherlands, 368p.
- Gungoren, C., Guven, O., Cinar, M., Ozdemir, O. 2019. An Investigation of the Effect of Clay Type on Coal Flotation Along with DLVO Theoretical Analyses, International Journal of Coal Preparation and Utilization, Vol., 1-13. DOI: 10.1080/19392699.2019.1603146
- Gungoren, C. 2019. An Investigation of Air/Water Interface in Mixed Aqueous Solutions of KCl, NaCl, and DAH, Physicochemical Problems of Mineral Processing, Vol. 55, 1259-1270. DOI: 10.5277/ppmp19050
- Bournival, G., Ata, S. 2021. An Evaluation of the Australian Coal Flotation Standards, Minerals, Vol. 11. DOI: 10.3390/min11060550
- An, M., Liao, Y., Cao, Y., Hao, X., Ma, L. 2021. Improving Low Rank Coal Flotation Using a Mixture of Oleic Acid and Dodecane as Collector: A New Perspective on Synergetic Effect, Processes, Vol. 9. DOI: 10.3390/pr9030404
- Hancer, M., Celik, M.S., Miller, J.D. 2001. The Significance of Interfacial Water Structure in Soluble Salt Flotation Systems, Journal of Colloid and Interface Science, Vol. 235, 150-161. DOI: 10.1006/jcis.2000.7350
- Ozdemir, O., Celik, M.S., Nickolov, Z.S., Miller, J.D. 2007. Water Structure and Its Influence on the Flotation of Carbonate and Bicarbonate Salts, Journal of Colloid and Interface Science, Vol. 314, 545-51. DOI: 10.1016/j.jcis.2007.05.086
- Ozdemir, O., Karaguzel, C., Nguyen, A.V., Celik, M.S., Miller, J.D. 2009. Contact Angle and Bubble Attachment Studies in the Flotation of Trona and Other Soluble Carbonate Salts, Minerals Engineering, Vol. 22, 168-175. DOI: 10.1016/j.mineng.2008.06.001
- Ozdemir, O., Ersoy, O.F., Guven, O., Turgut, H., Cinar, M., Celik, M.S. 2018. Improved Flotation of Heat Treated Lignite with Saline Solutions Containing Mono and Multivalent Ions, Physicochemical Problems of Mineral Processing, Vol. 54, 1070-1082. DOI: 10.5277/ppmp18118
- Celik, M.S., Hancer, M., Miller, J.D. 2002. Flotation Chemistry of Boron Minerals, Journal of Colloid and Interface Science, Vol. 256, 121-131. DOI: 10.1006/jcis.2001.8138
- Yoon, R.H., Sabey, J.B. 1982. Coal Flotation in Inorganic Salt Solutions. USA.
- Laskowski, J.S. 1994. Coal Surface Chemistry and Its Role in Fine Coal Beneficiation and Utilization, Coal Preparation, Vol. 14, 115-131. DOI: 10.1080/07349349408905229
- Aplan, F.F. 1993. Gaudin Lecture: Coal Properties Dictate Coal Flotation Strategies, Mining Engineering, Vol. 45, 83-96.
- Ozdemir, O., Cinku, K., Uslu, T., Kılıc, E., Celik, M.S. 2013. Flotation Behavior of Bituminous and Lignite Coals in Salty Water (in Turkish), Afyon Kocatepe University Journal of Sciences and Engineering, Vol. 13, 1-14. DOI: 10.5578/fmbd.5218
- Ozkan, A., Ilikay, I.S., Esmeli, K. 2019. Lignite Flotation in Inorganic Salt Solutions, International Journal of Coal Preparation and Utilization, DOI: 10.1080/19392699.2019.1700959
- Klassen, V.I., Mokrousov, V.A. 1963. An Introduction to the Theory of Flotation., Butterworths, London, 493p.
- Paulson, O., Pugh, R.J. 1996. Flotation of Inherently Hydrophobic Particles in Aqueous Solutions of Inorganic Electrolytes, Langmuir, Vol. 12, 4808-4813. DOI: 10.1021/la960128n
- Harvey, P.A., Nguyen, A.V., Evans, G.M. 2002. Influence of Electrical Double-Layer Interaction on Coal Flotation, Journal of Colloid and Interface Science, Vol. 250, 337-43. DOI: 10.1006/jcis.2002.8367
- Ozdemir, O., Taran, E., Hampton, M.A., Karakashev, S.I., Nguyen, A.V. 2009. Surface Chemistry Aspects of Coal Flotation in Bore Water, International Journal of Mineral Processing, Vol. 92, 177-183. DOI: 10.1016/j.minpro.2009.04.001
- Albijanic, B., Ozdemir, O., Nguyen, A.V., Bradshaw, D. 2010. A Review of Induction and Attachment Times of Wetting Thin Films between Air Bubbles and Particles and Its Relevance in the Separation of Particles by Flotation, Advances in Colloid and Interface Science, Vol. 159, 1-21. DOI: 10.1016/j.cis.2010.04.003
- Ozdemir, O., Du, H., Karakashev, S.I., Nguyen, A.V., Celik, M.S., Miller, J.D. 2011. Understanding the Role of Ion Interactions in Soluble Salt Flotation with Alkylammonium and Alkylsulfate Collectors, Advances in Colloid and Interface Science, Vol. 163, 1-22. DOI: 10.1016/j.cis.2011.01.003
- Ren, H., Liao, Y., Yang, Z., An, M., Hao, X., Song, X., Liu, Z. 2021. Effect of Fe2+ on Low Rank Coal Flotation Using Oleic Acid as Collector, Powder Technology, Vol. 393, 250-256. DOI: 10.1016/j.powtec.2021.07.078
- Miller, J.D., Laskowski, J.S., Chang, S.S. 1983. Dextrin Adsorption by Oxidized Coal, Colloids and Surfaces, Vol. 8, 137-151. DOI: 10.1016/0166-6622(83)80081-X.
- Gungoren, C., Ozdemir, O., Wang, X., Ozkan, S.G., Miller, J.D. 2019. Effect of Ultrasound on Bubble-Particle Interaction in Quartz-Amine Flotation System, Ultrasonics Sonochemistry, Vol. 52, 446-454. DOI: 10.1016/j.ultsonch.2018.12.023
- Laskowski, J., Iskra, J. 1970. Role of Capillary Effects in Bubble-Particle Collision in Flotation, The Institution of Mining and Metallurgy Section C, Vol. 79, C6–C10.
- Bournival, G., Zhang, F., Ata, S. 2019. Coal Flotation in Saline Water: Effects of Electrolytes on Interfaces and Industrial Practice, Mineral Processing and Extractive Metallurgy Review, Vol. 42, 53-73. DOI: 10.1080/08827508.2019.1654474
- Sun, X., Zhang, L., Xie, Z., Li, B., Liu, S. 2021. Improvement of Low‐Rank Coal Flotation Based on the Enhancement of Wettability Difference between Organic Matter and Gangue, Journal of Surfactants and Detergents, Vol. 24, 269-279. DOI: 10.1002/jsde.12482
- Huang, L., Song, S., Gu, G., Wang, Y. 2020. The Interaction between Cations in Saline Water and Calcium Bentonite in Copper Flotation, Mining, Metallurgy & Exploration, Vol. 38, 693-699. DOI: 10.1007/s42461-020-00297-4
- Bournival, G., Ata, S. 2021. The Impact of Water Salinity and Its Interaction with Flotation Reagents on the Quality of Coal Flotation Products, Journal of Cleaner Production, DOI: 10.1016/j.jclepro.2021.129519
- Ozdemir, O. 2013. Specific Ion Effect of Chloride Salts on Collectorless Flotation of Coal, Physicochemical Problems of Mineral Processing, Vol. 49, 511-524. DOI: 10.5277/ppmp130212
- Li, C., Somasundaran, P. 1993. Role of Electrical Double Layer Forces and Hydrophobicity in Coal Flotation in NaCl Solutions, Energy & Fuels, Vol. 7, 244-248.
- Kurniawan, A.U., Ozdemir, O., Nguyen, A.V., Ofori, P., Firth, B. 2011. Flotation of Coal Particles in MgCl2, NaCl, and NaClO3 Solutions in the Absence and Presence of Dowfroth 250, International Journal of Mineral Processing, Vol. 98, 137-144. DOI: 10.1016/j.minpro.2010.11.003
- Tao, D. 2005. Role of Bubble Size in Flotation of Coarse and Fine Particles—a Review, Separation Science and Technology Vol. 39, 741-760. DOI: 10.1081/ss-120028444
- Bournival, G., Pugh, R.J., Ata, S. 2012. Examination of NaCl and MIBC as Bubble Coalescence Inhibitor in Relation to Froth Flotation, Minerals Engineering, Vol. 25, 47-53. DOI: 10.1016/j.mineng.2011.10.008
- Ata, S. 2008. Coalescence of Bubbles Covered by Particles, Langmuir, Vol. 24, 6085-6091. DOI: 10.1021/la800466x
- Ata, S. 2009. The Detachment of Particles from Coalescing Bubble Pairs, Journal of Colloid and Interface Science, Vol. 338, 558-65. DOI: 10.1016/j.jcis.2009.07.003
- Bournival, G., Du, Z., Ata, S., Jameson, G.J. 2014. Foaming and Gas Dispersion Properties of Non-Ionic Frothers in the Presence of Hydrophobized Submicron Particles, International Journal of Mineral Processing, Vol. 133, 123-131. DOI: 10.1016/j.minpro.2014.08.010
- Orvalho, S., Ruzicka, M.C., Olivieri, G., Marzocchella, A. 2015. Bubble Coalescence: Effect of Bubble Approach Velocity and Liquid Viscosity, Chemical Engineering Science, Vol. 134, 205-216. DOI: 10.1016/j.ces.2015.04.053
- Craig, V.S.J. 2004. Bubble Coalescence and Specific-Ion Effects, Current Opinion in Colloid & Interface Science, Vol. 9, 178-184. DOI: 10.1016/j.cocis.2004.06.002
- Tsang, Y.H., Koh, Y.H., Koch, D.L. 2004. Bubble-Size Dependence of the Critical Electrolyte Concentration for Inhibition of Coalescence, Journal of Colloid and Interface Science, Vol. 275, 290-7. DOI: 10.1016/j.jcis.2004.01.026
- Botello-Alvarez, J.E., Baz-Rodriguez, S.A., Gonzalez-Garcia, R., Estrada-Baltazar, A., Padilla-Medina, J.A., Alatorre, G.G., Navarrete-Bolanos, J.L.N. 2011. Effect of Electrolytes in Aqueous Solution on Bubble Size in Gas Liquid Bubble Columns, Industrial & Engineering Chemistry Research, Vol. 50, 12203-12207. DOI: 10.1021/ie200452q
- Quinn, J.J., Sovechles, J.M., Finch, J.A., Waters, K.E. 2014. Critical Coalescence Concentration of Inorganic Salt Solutions, Minerals Engineering, Vol. 58, 1-6. DOI: 10.1016/j.mineng.2013.12.021
- Nguyen, P.T., Hampton, M.A., Nguyen, A.V., Birkett, G.R. 2012. The Influence of Gas Velocity, Salt Type and Concentration on Transition Concentration for Bubble Coalescence Inhibition and Gas Holdup, Chemical Engineering Research and Design, Vol. 90, 33-39. DOI: 10.1016/j.cherd.2011.08.015
- Marucci, G., Nicodemo, L. 1967. Coalescence of Gas Bubbles in Aqueous Solutions of Inorganic Electrolytes, Chemical Engineering Science, Vol. 22, 1257–1265. DOI: 10.1016/0009-2509(67)80190-8
- Craig, V.S.J., Ninham, B.W., Pashley, R.M. 1993. Effect of Electrolytes on Bubble Coalescence, Nature, Vol. 364, 317-319. DOI: 10.1038/364317a0
- Craig, V.S.J., Ninham, B.W., Pashley, R.M. 1993. The Effect of Electrolytes on Bubble Coalescence in Water, The Journal of Physical Chemistry, 10192-10197. DOI: 10.1021/j100141a047
- Prince, M.J., Blanch, H.W. 1990. Transition Electrolyte Concentrations for Bubble Coalescence, AIChE Journal, Vol. 36, 1425-1429. DOI: 10.1002/aic.690360915
- Sadeghi, F., Vissers, A.J. 2020. Experimental Investigation of Bubble Size in Flotation: Effect of Salt, Coagulant, Temperature, and Organic Compound, SPE Production & Operations, DOI: 10.2118/200495-PA
- Li, C., Somasundaran , P. 1991. Reversal of Bubble Charge in Multivalent Inorganic Salt Solutions-Effect of Magnesium, Journal of Colloid and Interface Science, Vol. 146, 215-218. DOI: 10.1016/0021-9797(91)90018-4
- Craig, V.S.J. 2011. Do Hydration Forces Play a Role in Thin Film Drainage and Rupture Observed in Electrolyte Solutions?, Current Opinion in Colloid & Interface Science, Vol. 16, 597-600. DOI: 10.1016/j.cocis.2011.04.003
- Wu, Z., Wang, X., Liu, H., Zhang, H., Miller, J.D. 2016. Some Physicochemical Aspects of Water-Soluble Mineral Flotation, Advances in Colloid and Interface Science, Vol. 235, 190-200. DOI: 10.1016/j.cis.2016.06.005
- Wang, B., Peng, Y. 2014. The Effect of Saline Water on Mineral Flotation – a Critical Review, Minerals Engineering, Vol. 66-68, 13-24. DOI: 10.1016/j.mineng.2014.04.017
- Gungoren, C., Islek, E., Baktarhan, Y., Kurşun Unver, I., Ozdemir, O. 2018. A Novel Technique to Investigate the Bubble Coalescence in the Presence of Surfactant (MIBC) and Electrolytes (NaCl and CaCl2), Physicochemical Problems of Mineral Processing, Vol. 54, 1215-1222. DOI: 10.5277/ppmp18158