BibTex RIS Cite

ALTIN NANOPARÇACIK MODİFİYE ÇOK DUVARLI KARBON NANOTÜP ELEKTROTLARDA VANİLİN TAYİNİ

Year 2018, Volume: 20 Issue: 59, 461 - 470, 01.05.2018

Abstract

In this study, modified electrodes were prepared for Vanilline (VAN) determination. Multiwalled carbon nanotubes (MWCNT) were functionalized with acid treatment and then gold nanoparticles were electrodeposited on the MWCNTs by applying several repetitive scans in order to form gold nanoparticles modified multiwalled carbon nanotube glassy carbon electrode (Au–MWCNT/GCE) surface. The morphology and structure of electrode surfaces were characterized by scanning electron microscopy (SEM). The resulting Au–MWCNT/GC electrode showed efficient behavior to VAN electro-oxidation. The calibration graph consisted of two linear segments of 7.0x10-86.5x10-6 mol L-1 and 7.0x10-6-7.5x10 mol L-1 with a detection limit of 3.8x10-8 mol L-1 thatobtained from differential pulse studies. The practical applicability of the proposed modified electrode was tested for the determination of VAN in commercial ice cream and milk powder. The satisfactory results show that the Au–MWCNT/GCE has promising potential in sensor applications

References

  • Sivakumar, M., Sakthivel, M., Chen, Shen-M. 2017. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples, Journal of Colloid and Interface Science, Vol. 490, p. 719-726. DOI: 10.1016/j.jcis.2016.11.094
  • Walton, N.J., Mayer, M.J., Narbad, A. 2003. Vanillin, Phytochemistry, Vol. 63, p. 505-515. DOI: 10.1016/S0031-9422(03)00149- 3.
  • Sinha, A.K., Sharma, U.K., Sharma N. 2008. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents, International Journal of Food Sciences and Nutrition, Vol. 59, p. 299-326. 10.1080/09687630701539350
  • Luo, S., Liu, Y. 2012. Poly(acid chrome blue K) modified glassy carbon determination International
  • Electrochemical Science, Vol. 7, p. 6396-6405. for the of Journal
  • of [5] Hardcastle, J.L., Paterson, C.J., Compton, R.G. 2001. Biphasic Sonoelectroanalysis:
  • Simultaneous Extraction from,and Determination of Vanillin in Food Flavoring, Electroanalysis, Vol. 13, p. 899-905.
  • Jiang, L., Ding, Y., Jiang, F., Li, L., Mo F. 2014. Electrodeposited nitrogen-doped graphene/carbon nanotubes
  • enhancer for simultaneous and sensitive
  • determination of caffeine and vanillin, Analytica Chimica Acta, Vol.
  • 1016/j.aca.2014.05.010.
  • as voltammetric 833, p. 22–28.
  • DOI: [7] Huang, L., Hou, K., Jia, X., Pan, H., Du, M. 2014. Preparation of novel silver
  • composite and their application in vanillin electrochemical detection, Materials
  • Engineering: C, Vol. 38, p. 39-45. DOI:10.1016/j.msec.2014.01.037. [8] Shen, Y., Han, C., Liu B., Lin, Z., Zhou, X., Wang, C., Zhu Z. 2014. Determination of vanillin, ethyl vanillin, and coumarin in infant formula
  • chromatography-quadrupole
  • linear ion trap mass spectrometry, Journal of Dairy Science, Vol. 97, p. 679–686. DOI: 10.3168/jds.2013- 7308.
  • liquid [9] Ohashi, M., Omae, H., Hashida, M., Sowa,
  • Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis, Journal of Chromatography A, Vol. 1138,
  • 1016/j.chroma.2006.10.031.
  • Turkia, H., Sirén, H., Penttilä M., Pitkänen J.P. 2013. Capillary electrophoresis for the monitoring of bioprocesses,
  • Chromatography A, Vol. 1278, p. 175–180.
  • 1016/j.chroma.2013.01.004.
  • in of DOI: [11] Timotheou-Potamia, M., Calokerinos Chemiluminometric
  • determination of vanillin in commercial vanillin products, Talanta, Vol. 71, p. 208–212. DOI: 10.1016/j.talanta.2006.03.046.
  • Duan, H., Li, X., Li, L., Wang, X., Feng, J., Sun, M., Luo C. 2014. A novel chemiluminescence sensor for determination of vanillin with magnetite–graphene
  • molecularly imprinted polymers, Analytical Methods, Vol. 6, p. 8706-8712. 10.1039/C4AY01275E.
  • oxide DOI: [13] Waliszewski, K.N., Pardio, V.T., Ovando S.L. 2007. A simple and rapid HPLC technique for vanillin determination in alcohol extract, Food Chemistry,Vol. 101, p. 1059– 1062.
  • 1016/j.foodchem.2006.03.004. DOI: [14] de Jager, L.S., Perfetti, G.A., Diachenko, Determination
  • vanillin, and ethyl vanillin in vanilla extract products: liquid chromatography spectrometry development studies.
  • Chromatography A, Vol. 1145, p. 83-88.
  • 1016/j.chroma.2007.01.039.
  • Sinha, A.K., Sharma, U.K., N. Sharma,
  • comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents, International Journal of Food Sciences and Nutrition, Vol. 59, p. 299-326. DOI: 10.1080/09687630701539350.
  • Silva, T.R., Brondani, D., Zapp, E.,
  • Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine fordetermination
  • Electroanalysis, Vol. 27, p. 465– 472.
  • 1002/elan.201400517.
  • hydrochloride) of
  • vanillin, DOI: [17] Yardım, Y., Gülcan, M., Sentürk, Z. 2013. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode, Food Chemistry, Vol. 141,
  • 1016/j.foodchem.2013.04.085. DOI: [18] Yardım, Y., Gülcan, M., Şentürk Z. 2013. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode, Food Chemistry, Vol. 141,
  • 1016/j.foodchem.2013.04.085. DOI: [19] Ali, H.S., Abdullah, A.A., Pınar, P.T., Yardım, Y., Şentürk Z. 2017. Simultaneous
  • determination of vanillin and caffeine in food products using an anodically
  • doped diamond electrode: Its comparison
  • Talanta, Vol. 170, P. 384–391. DOI: 10.1016/j.talanta.2017.04.037.
  • Chethana, B.K., Basavanna, S., Naik, Y.A. 2012. Determination of vanillin in real samples using lysine modified carbon paste electrode, Journal of Chemical and Pharmaceutical Research, Vol. 4, p. 538–545.
  • Peng, J., Hou, C., Hu, X. 2012. A graphene-based electrochemical sensor for sensitive detection of vanillin, International Journal of Electrochemical Science, Vol. 7, p. 1724–1733.
  • Li, J., Feng, H., Li, J., Jiang, J., Feng, Y., He, L., Qian,D. 2015. Bimetallic Ag-Pd nanoparticles- decorated graphene oxide: a fascinating nanohybrid
  • electrochemical sensing platform for
  • Electrochimica Acta, Vol. 176, p. 827–835.
  • 1016/j.electacta.2015.07.091.
  • DOI: incorporated simultaneous DOI: [24] Development deposited molybdenum decorated
  • nanoparticles and their catalytic application for
  • oxidation Ozdokur, K.V., Tatlı, A.Y., Yılmaz, B., Koçak, S., Ertaş F.N. 2016. International Journal of Hydrogen Energy, Vol. 41, p. 5927 -5933.
  • 1016/j.ijhydene.2016.02.127.
  • DOI: [25] Koçak, S., Aslışen B.
  • Hydrazine oxidation at gold nanoparticles
  • poly(bromocresol purple) carbon nanotube modified glassy carbon electrode, Sensors and Actuators B, Vol. 196, p. 610–618. DOI: .org/10.1016/j.snb.2014.02.061.
  • Cittan, M., Koçak, S., Çelik, A., Dost K.2016, Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping
  • voltammetry, Talanta, Vol. 159 p. 148–154.
  • 1016/j.talanta.2016.06.021.
  • Bakır, Ç.C., Şahin, N., Polat, R., Dursun Z. 2011. Electrocatalytic reduction of oxygen on bimetallic copper–gold
  • multiwalled carbon nanotube modified glassy carbon electrode in alkaline solution, Journal of Electroanalytical Chemistry, Vol. 662 p. 275–280.
  • Ertek, B., Dilgin, Y. 2016. Photoamperometric flow injection analysis of glucose based on dehydrogenase modified quantum dots-carbon nanocomposite
  • Bioelectrochemistry, Vol. 112, p. 138–144.
  • 1016/j.bioelechem.2016.02.00 8.
  • nanotube electrode, DOI: [29] Ayan, E.M., Karabiberoğlu, Ş.U., Dursun, Z. 2013. Electrochemistry of 2,6-diaminopurine on multiwall carbon nanotube modified glassy carbon electrode,Turkish Journal of Chemistry, Vol.37, p. 325–334. DOI: 10.3906/kim-1111-4.

ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE

Year 2018, Volume: 20 Issue: 59, 461 - 470, 01.05.2018

Abstract

Bu çalışmada, Vanilin(VAN) tayini için modifiye elektrotlar hazırlanmıştır. Çok duvarlı karbon nanotüpler (MWCNT) asit muamelesi ile foksiyonalize edilmiş ve ardından altın nanoparçacıklar ardışık tekrarlanan taramalar ile altın nanoparçacık modifiye çok duvarlı karbon nanotüp camımsı karbon elektrokimyasal olarak biriktirilmiştir. Elektrot yüzey yapısı ve (Au-MWCNT/GCE)

References

  • Sivakumar, M., Sakthivel, M., Chen, Shen-M. 2017. Simple synthesis of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples, Journal of Colloid and Interface Science, Vol. 490, p. 719-726. DOI: 10.1016/j.jcis.2016.11.094
  • Walton, N.J., Mayer, M.J., Narbad, A. 2003. Vanillin, Phytochemistry, Vol. 63, p. 505-515. DOI: 10.1016/S0031-9422(03)00149- 3.
  • Sinha, A.K., Sharma, U.K., Sharma N. 2008. A comprehensive review on vanilla flavor: Extraction, isolation and quantification of vanillin and others constituents, International Journal of Food Sciences and Nutrition, Vol. 59, p. 299-326. 10.1080/09687630701539350
  • Luo, S., Liu, Y. 2012. Poly(acid chrome blue K) modified glassy carbon determination International
  • Electrochemical Science, Vol. 7, p. 6396-6405. for the of Journal
  • of [5] Hardcastle, J.L., Paterson, C.J., Compton, R.G. 2001. Biphasic Sonoelectroanalysis:
  • Simultaneous Extraction from,and Determination of Vanillin in Food Flavoring, Electroanalysis, Vol. 13, p. 899-905.
  • Jiang, L., Ding, Y., Jiang, F., Li, L., Mo F. 2014. Electrodeposited nitrogen-doped graphene/carbon nanotubes
  • enhancer for simultaneous and sensitive
  • determination of caffeine and vanillin, Analytica Chimica Acta, Vol.
  • 1016/j.aca.2014.05.010.
  • as voltammetric 833, p. 22–28.
  • DOI: [7] Huang, L., Hou, K., Jia, X., Pan, H., Du, M. 2014. Preparation of novel silver
  • composite and their application in vanillin electrochemical detection, Materials
  • Engineering: C, Vol. 38, p. 39-45. DOI:10.1016/j.msec.2014.01.037. [8] Shen, Y., Han, C., Liu B., Lin, Z., Zhou, X., Wang, C., Zhu Z. 2014. Determination of vanillin, ethyl vanillin, and coumarin in infant formula
  • chromatography-quadrupole
  • linear ion trap mass spectrometry, Journal of Dairy Science, Vol. 97, p. 679–686. DOI: 10.3168/jds.2013- 7308.
  • liquid [9] Ohashi, M., Omae, H., Hashida, M., Sowa,
  • Determination of vanillin and related flavor compounds in cocoa drink by capillary electrophoresis, Journal of Chromatography A, Vol. 1138,
  • 1016/j.chroma.2006.10.031.
  • Turkia, H., Sirén, H., Penttilä M., Pitkänen J.P. 2013. Capillary electrophoresis for the monitoring of bioprocesses,
  • Chromatography A, Vol. 1278, p. 175–180.
  • 1016/j.chroma.2013.01.004.
  • in of DOI: [11] Timotheou-Potamia, M., Calokerinos Chemiluminometric
  • determination of vanillin in commercial vanillin products, Talanta, Vol. 71, p. 208–212. DOI: 10.1016/j.talanta.2006.03.046.
  • Duan, H., Li, X., Li, L., Wang, X., Feng, J., Sun, M., Luo C. 2014. A novel chemiluminescence sensor for determination of vanillin with magnetite–graphene
  • molecularly imprinted polymers, Analytical Methods, Vol. 6, p. 8706-8712. 10.1039/C4AY01275E.
  • oxide DOI: [13] Waliszewski, K.N., Pardio, V.T., Ovando S.L. 2007. A simple and rapid HPLC technique for vanillin determination in alcohol extract, Food Chemistry,Vol. 101, p. 1059– 1062.
  • 1016/j.foodchem.2006.03.004. DOI: [14] de Jager, L.S., Perfetti, G.A., Diachenko, Determination
  • vanillin, and ethyl vanillin in vanilla extract products: liquid chromatography spectrometry development studies.
  • Chromatography A, Vol. 1145, p. 83-88.
  • 1016/j.chroma.2007.01.039.
  • Sinha, A.K., Sharma, U.K., N. Sharma,
  • comprehensive review on vanilla flavor: extraction, isolation and quantification of vanillin and others constituents, International Journal of Food Sciences and Nutrition, Vol. 59, p. 299-326. DOI: 10.1080/09687630701539350.
  • Silva, T.R., Brondani, D., Zapp, E.,
  • Electrochemical sensor based on gold nanoparticles stabilized in poly(allylamine fordetermination
  • Electroanalysis, Vol. 27, p. 465– 472.
  • 1002/elan.201400517.
  • hydrochloride) of
  • vanillin, DOI: [17] Yardım, Y., Gülcan, M., Sentürk, Z. 2013. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode, Food Chemistry, Vol. 141,
  • 1016/j.foodchem.2013.04.085. DOI: [18] Yardım, Y., Gülcan, M., Şentürk Z. 2013. Determination of vanillin in commercial food product by adsorptive stripping voltammetry using a boron-doped diamond electrode, Food Chemistry, Vol. 141,
  • 1016/j.foodchem.2013.04.085. DOI: [19] Ali, H.S., Abdullah, A.A., Pınar, P.T., Yardım, Y., Şentürk Z. 2017. Simultaneous
  • determination of vanillin and caffeine in food products using an anodically
  • doped diamond electrode: Its comparison
  • Talanta, Vol. 170, P. 384–391. DOI: 10.1016/j.talanta.2017.04.037.
  • Chethana, B.K., Basavanna, S., Naik, Y.A. 2012. Determination of vanillin in real samples using lysine modified carbon paste electrode, Journal of Chemical and Pharmaceutical Research, Vol. 4, p. 538–545.
  • Peng, J., Hou, C., Hu, X. 2012. A graphene-based electrochemical sensor for sensitive detection of vanillin, International Journal of Electrochemical Science, Vol. 7, p. 1724–1733.
  • Li, J., Feng, H., Li, J., Jiang, J., Feng, Y., He, L., Qian,D. 2015. Bimetallic Ag-Pd nanoparticles- decorated graphene oxide: a fascinating nanohybrid
  • electrochemical sensing platform for
  • Electrochimica Acta, Vol. 176, p. 827–835.
  • 1016/j.electacta.2015.07.091.
  • DOI: incorporated simultaneous DOI: [24] Development deposited molybdenum decorated
  • nanoparticles and their catalytic application for
  • oxidation Ozdokur, K.V., Tatlı, A.Y., Yılmaz, B., Koçak, S., Ertaş F.N. 2016. International Journal of Hydrogen Energy, Vol. 41, p. 5927 -5933.
  • 1016/j.ijhydene.2016.02.127.
  • DOI: [25] Koçak, S., Aslışen B.
  • Hydrazine oxidation at gold nanoparticles
  • poly(bromocresol purple) carbon nanotube modified glassy carbon electrode, Sensors and Actuators B, Vol. 196, p. 610–618. DOI: .org/10.1016/j.snb.2014.02.061.
  • Cittan, M., Koçak, S., Çelik, A., Dost K.2016, Determination of oleuropein using multiwalled carbon nanotube modified glassy carbon electrode by adsorptive stripping
  • voltammetry, Talanta, Vol. 159 p. 148–154.
  • 1016/j.talanta.2016.06.021.
  • Bakır, Ç.C., Şahin, N., Polat, R., Dursun Z. 2011. Electrocatalytic reduction of oxygen on bimetallic copper–gold
  • multiwalled carbon nanotube modified glassy carbon electrode in alkaline solution, Journal of Electroanalytical Chemistry, Vol. 662 p. 275–280.
  • Ertek, B., Dilgin, Y. 2016. Photoamperometric flow injection analysis of glucose based on dehydrogenase modified quantum dots-carbon nanocomposite
  • Bioelectrochemistry, Vol. 112, p. 138–144.
  • 1016/j.bioelechem.2016.02.00 8.
  • nanotube electrode, DOI: [29] Ayan, E.M., Karabiberoğlu, Ş.U., Dursun, Z. 2013. Electrochemistry of 2,6-diaminopurine on multiwall carbon nanotube modified glassy carbon electrode,Turkish Journal of Chemistry, Vol.37, p. 325–334. DOI: 10.3906/kim-1111-4.
There are 67 citations in total.

Details

Other ID JA56VT68PE
Journal Section Research Article
Authors

Çağrı Ceylan Koçak This is me

Şükriye Karabiberoğlu This is me

Publication Date May 1, 2018
Published in Issue Year 2018 Volume: 20 Issue: 59

Cite

APA Koçak, Ç. C., & Karabiberoğlu, Ş. (2018). ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 20(59), 461-470.
AMA Koçak ÇC, Karabiberoğlu Ş. ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE. DEUFMD. May 2018;20(59):461-470.
Chicago Koçak, Çağrı Ceylan, and Şükriye Karabiberoğlu. “ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 20, no. 59 (May 2018): 461-70.
EndNote Koçak ÇC, Karabiberoğlu Ş (May 1, 2018) ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20 59 461–470.
IEEE Ç. C. Koçak and Ş. Karabiberoğlu, “ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE”, DEUFMD, vol. 20, no. 59, pp. 461–470, 2018.
ISNAD Koçak, Çağrı Ceylan - Karabiberoğlu, Şükriye. “ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 20/59 (May 2018), 461-470.
JAMA Koçak ÇC, Karabiberoğlu Ş. ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE. DEUFMD. 2018;20:461–470.
MLA Koçak, Çağrı Ceylan and Şükriye Karabiberoğlu. “ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 20, no. 59, 2018, pp. 461-70.
Vancouver Koçak ÇC, Karabiberoğlu Ş. ELECTROCHEMICAL VANILLIN DETERMINATION ON GOLD NANOPARTICLES MODIFIED MULTIWALLED CARBON NANOTUBE ELECTRODE. DEUFMD. 2018;20(59):461-70.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.