BibTex RIS Cite

CORRELATION BETWEEN EQUOTIP HARDNESS INDEX, MECHANICAL PROPERTIES AND DRILLABILITY OF ROCKS

Year 2017, Volume: 19 Issue: 56, 519 - 531, 01.05.2017

Abstract

Selection of a jumbo drill and appropriate bit type are important factors affecting machine performance and unit costs when excavating a mine roadway or tunnel. The selection process can be optimized if the drillability, hardness and other mechanical properties of rocks are accurately measured. In this article, block samples collected at various locations around the world were initially prepared according to ISRM standards. Next, the Equotip hardness, Shore hardness, and mechanical properties were determined. In addition, the drilling rate index of the samples was measured and each sample was categorized based on its drillability. The relationship between Equotip hardness index, Shore index, drilling rate index, and other mechanical properties were analyzed. Simple regression statistics revealed that Equotip hardness index test could be reliably used to predict the drillability of rocks that have a compressive strength higher than 19 MPa and a drilling rate index lower than 70

References

  • Altindag, R., Guney, A. 2005. Effect of the Specimen Size on the Determination of Consistent Shore Hardness
  • Journal of Rock Mechanics and Mining Sciences, Cilt. 42, No. 1, s.153-160. 2004.08.002
  • International DOI:10.1016/j.ijrmms. [2] ISRM. 1978. Suggested Methods for Determining
  • Abrasiveness of rocks, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Cilt. 15, No. 3, s. 89-97. DOI: 10.1016/0148-9062(78)90002 -5
  • and [3] Su, O. 2003. Kömürün Dayanım ile Özellikleri
  • Arasındaki İlişkilerin Araştırılması. Y. Lisans Tezi, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, 100s, Zonguldak.
  • Holmgeirsdottir, T., Thomas, PR. 1998. Use of the D-762 Shore Hardness Scleroscope for Testing Small Rock Volumes, International Journal of Rock Mechanics and Mining Sciences, Cilt. 35, s. 85–92. DOI:10.1016/S0148-9062(97)0031 7-3
  • ASTM E448-82. 2012. Standard Practice for Scleroscope Hardness Testing of Metallic Materials, 5 s.
  • Altindag, R., Guney, A. 2006. ISRM Suggested Method for Determining the Shore Hardness Value for Rock, International Journal of Rock Mechanics and Mining Sciences, Cilt. 43, s. 19-22. DOI: 10.1016/j.ijrmms. 2005.04.004
  • ASTM D5873-05. 2012. Standard Test Method for Determination of Rock Hammer Method, 4 s.
  • Rebound [8] Szlavin, J. 1974. Relationships between Some Physical Properties of Rock Determined by Laboratory Tests, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Cilt. 12, No. 2, s.57-66. DOI: 10.1016/0148- 9062(74)92649-7
  • Rabia, H., Brook, N. 1979. Shore Hardness of Rock, International Mining Sciences & Geomechanics Abstracts, Cilt. 16, s.335-336. DOI:10.1016/0148-9062(79)90245 -6 [10] Arthur, C.D. 1996.
  • The Determination of Rock Material Properties Performance of Machine Excavation in Tunnels, Quarterly Journal of Engineering Geology, Cilt. 29, s. 67- 81.DOI:10.1144/GSL.QJEGH.1996.0 29.P1.05
  • the [11] Koncagül, E.C., Santi, P.M. 1999. Predicting
  • Compressive Strength of the Breathitt Durability, Shore Hardness and Rock International Journal of Rock Mechanics and Mining Sciences, Cilt. 36, No. 2, s.139-153.DOI:10.1016/ S01489062(98)00174-0 Slake Structural
  • Properties, [12] Altindag, R. 2002. Effects of Specimen Volume and Temperature on
  • Hardness, Rock Mechanics and Rock Engineering, Cilt. 35, No. 2, s.109- 113. DOI: 10.1007/ s006030200014 [13] Yaşar, E., Erdoğan, Y. 2004. Estimation
  • Physicomechanical Properties Using Hardness Methods, Engineering Geology, Cilt. 71, No. (3-4), s. 281- 288. DOI:10.1016/S0013-7952(03) 00141-8
  • Rock [14] Shalabi, F.I., Cording, E.J., Al- Hattamleh, O.H. 2007. Estimation of rock Engineering Properties Using Hardness
  • Geology, Cilt. 90, No. 3-4, s. 138-147. DOI: 10.1016/j.enggeo. 2006.12.006 [15] Yurdakul, M., Akdaş, H. 2012. Prediction of Specific Cutting Energy for Large Diameter Circular Saws During Natural Stone Cutting, International Journal of Rock Mechanics and Mining Sciences, Cilt. 53, s. 38-44. DOI: 10.1016/j.ijrmms. 2012.03.008
  • Sengun, N. 2014. Influence of Thermal Damage on the Physical and Mechanical Properties of Carbonate Rocks, Arabian Journal of Geoscience, Cilt. 7, s. 5543-5551. DOI: 10.1007/s12517-013-1177-x
  • Klawitter, M., Joan, E., Sarah, C. 2015. A Study of Hardness and Fracture Propagation in Coal, International Journal of Rock Mechanics and Mining Sciences, Cilt. 76, s. 236-242. DOI:10.1016/ j.ijrmms. 2015.02.006
  • Tumac, D., Hojjati, S. 2016. Predicting Performance of Impact Hammers from Rock Quality Designation
  • Strength Properties in Various Rock Masses,
  • Underground Space Technology, Cilt. 59, s. 38-47. DOI: 10.1016/ j.tust.2016.06.008
  • Compressive Tunnelling
  • and [19] Dogruoz, C., Bolukbasi, N., Rostami, J. 2016. An Experimental Study of Cutting Performances of Worn Picks, Rock Mechanics and Rock Engineering, Cilt. 49, No. 1, s. 213- 224.DOI:10.1007/s00603-015-0734 -x
  • Aoki, H., Matsukura, Y. 2007. Estimating
  • compressive strength of intact rocks from Equotip hardness. Bulletin of Engineering
  • Environment, Cilt. 67, s.23-29. DOI: 10.1007/s10064-007-0116-z
  • Verwaal, W., Mulder, A. 1993. Estimating Rock Strength with the Equotip
  • International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Cilt. 30, No. 10.1016/0148-9062(93)91226-9
  • DOI: [22] Meulenkamp, F., Grima, M.A. 1999. Application of Neural Networks for the Prediction of the Unconfined Compressive Strength (UCS) from Equotip Hardness. International Mining Sciences, Cilt. 36, No. 1, s. 29- 39. DOI: 10.1016/S0148-9062(98) 00173-9
  • Altindag, R. 2002. The Evaluation of Rock Brittleness Concept on Rotary Blast Hole Drills, Journal of The South African Institute of Mining and Metallurgy, Cilt. 102, No. 1, s. 61-66.
  • Altindag, R. 2003. Correlation of Energy Specific
  • Brittleness Concepts on Rock Cutting, Journal of The South African Institute of Mining and Metallurgy, Cilt. 103, No. 3, s.163- 172.
  • Rock [25] Dahl, F., Grİv, E., Breivik, T. 2007. Development of a New Direct Test Method for Estimating Cutter Life, Based on the Sievers’ J Miniature Drill
  • Underground Space Technology, Cilt. 22, No. 1, s. 106–116. DOI: 10.1016/j.tust.2006.03.001
  • and [26] Blindheim, O.T., Bruland, A. 1998. Boreability testing. Norwegian TBM Tunnelling 30 Years of Experience with
  • Tunnelling, s. 29-34, Oslo, Norway.
  • Norwegian [27] Dahl, F. 2003. DRI, BWI, CLI Standard. SINTEF report, Norway, 21 s.
  • Aoki, H., Matsukura, Y. 2007. A New Technique for Non-destructive Field Measurement
  • Strength: An Application of the Equotip

KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER

Year 2017, Volume: 19 Issue: 56, 519 - 531, 01.05.2017

Abstract

Yeraltı maden galerileri veya tünel kazısı sırasında uygun delici makine ve uç seçimi, makine performansını ve birim maliyetleri etkileyen önemli faktörlerdir. Bu seçim kayacın delinebilirlik, sertlik ve diğer mekanik özelliklerinin doğru olarak ölçülmesiyle yapılabilir. Bu makalede, öncelikle yurt içi ve yurt dışından alınan blok numuneler ISRM standartlarına göre uygun boyutlarda hazırlanmıştır. Daha sonra, laboratuvarda Equotip ve Shore sertliği ile mekanik özellikleri belirlenmiştir. Ayrıca, her bir numunenin delinebilirliğini sınıflandırmak üzere delme oranı indeksi ölçülmüştür. Bu bağlamda Equotip sertlik indeksi ile Shore indeksi, mekanik özellikleri ve delme oranı indeksi arasındaki ilişkiler incelenmiştir. Basit regresyon analizlerinden dayanımı 19 MPa’ın üzerinde ve delme oranı indeksi 70’in altında olan kayaçlarda Equotip sertlik indeksinin delinebilirliğin tahmininde güvenilir olarak kullanılabileceği belirlenmiştir

References

  • Altindag, R., Guney, A. 2005. Effect of the Specimen Size on the Determination of Consistent Shore Hardness
  • Journal of Rock Mechanics and Mining Sciences, Cilt. 42, No. 1, s.153-160. 2004.08.002
  • International DOI:10.1016/j.ijrmms. [2] ISRM. 1978. Suggested Methods for Determining
  • Abrasiveness of rocks, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Cilt. 15, No. 3, s. 89-97. DOI: 10.1016/0148-9062(78)90002 -5
  • and [3] Su, O. 2003. Kömürün Dayanım ile Özellikleri
  • Arasındaki İlişkilerin Araştırılması. Y. Lisans Tezi, Zonguldak Karaelmas Üniversitesi, Fen Bilimleri Enstitüsü, 100s, Zonguldak.
  • Holmgeirsdottir, T., Thomas, PR. 1998. Use of the D-762 Shore Hardness Scleroscope for Testing Small Rock Volumes, International Journal of Rock Mechanics and Mining Sciences, Cilt. 35, s. 85–92. DOI:10.1016/S0148-9062(97)0031 7-3
  • ASTM E448-82. 2012. Standard Practice for Scleroscope Hardness Testing of Metallic Materials, 5 s.
  • Altindag, R., Guney, A. 2006. ISRM Suggested Method for Determining the Shore Hardness Value for Rock, International Journal of Rock Mechanics and Mining Sciences, Cilt. 43, s. 19-22. DOI: 10.1016/j.ijrmms. 2005.04.004
  • ASTM D5873-05. 2012. Standard Test Method for Determination of Rock Hammer Method, 4 s.
  • Rebound [8] Szlavin, J. 1974. Relationships between Some Physical Properties of Rock Determined by Laboratory Tests, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Cilt. 12, No. 2, s.57-66. DOI: 10.1016/0148- 9062(74)92649-7
  • Rabia, H., Brook, N. 1979. Shore Hardness of Rock, International Mining Sciences & Geomechanics Abstracts, Cilt. 16, s.335-336. DOI:10.1016/0148-9062(79)90245 -6 [10] Arthur, C.D. 1996.
  • The Determination of Rock Material Properties Performance of Machine Excavation in Tunnels, Quarterly Journal of Engineering Geology, Cilt. 29, s. 67- 81.DOI:10.1144/GSL.QJEGH.1996.0 29.P1.05
  • the [11] Koncagül, E.C., Santi, P.M. 1999. Predicting
  • Compressive Strength of the Breathitt Durability, Shore Hardness and Rock International Journal of Rock Mechanics and Mining Sciences, Cilt. 36, No. 2, s.139-153.DOI:10.1016/ S01489062(98)00174-0 Slake Structural
  • Properties, [12] Altindag, R. 2002. Effects of Specimen Volume and Temperature on
  • Hardness, Rock Mechanics and Rock Engineering, Cilt. 35, No. 2, s.109- 113. DOI: 10.1007/ s006030200014 [13] Yaşar, E., Erdoğan, Y. 2004. Estimation
  • Physicomechanical Properties Using Hardness Methods, Engineering Geology, Cilt. 71, No. (3-4), s. 281- 288. DOI:10.1016/S0013-7952(03) 00141-8
  • Rock [14] Shalabi, F.I., Cording, E.J., Al- Hattamleh, O.H. 2007. Estimation of rock Engineering Properties Using Hardness
  • Geology, Cilt. 90, No. 3-4, s. 138-147. DOI: 10.1016/j.enggeo. 2006.12.006 [15] Yurdakul, M., Akdaş, H. 2012. Prediction of Specific Cutting Energy for Large Diameter Circular Saws During Natural Stone Cutting, International Journal of Rock Mechanics and Mining Sciences, Cilt. 53, s. 38-44. DOI: 10.1016/j.ijrmms. 2012.03.008
  • Sengun, N. 2014. Influence of Thermal Damage on the Physical and Mechanical Properties of Carbonate Rocks, Arabian Journal of Geoscience, Cilt. 7, s. 5543-5551. DOI: 10.1007/s12517-013-1177-x
  • Klawitter, M., Joan, E., Sarah, C. 2015. A Study of Hardness and Fracture Propagation in Coal, International Journal of Rock Mechanics and Mining Sciences, Cilt. 76, s. 236-242. DOI:10.1016/ j.ijrmms. 2015.02.006
  • Tumac, D., Hojjati, S. 2016. Predicting Performance of Impact Hammers from Rock Quality Designation
  • Strength Properties in Various Rock Masses,
  • Underground Space Technology, Cilt. 59, s. 38-47. DOI: 10.1016/ j.tust.2016.06.008
  • Compressive Tunnelling
  • and [19] Dogruoz, C., Bolukbasi, N., Rostami, J. 2016. An Experimental Study of Cutting Performances of Worn Picks, Rock Mechanics and Rock Engineering, Cilt. 49, No. 1, s. 213- 224.DOI:10.1007/s00603-015-0734 -x
  • Aoki, H., Matsukura, Y. 2007. Estimating
  • compressive strength of intact rocks from Equotip hardness. Bulletin of Engineering
  • Environment, Cilt. 67, s.23-29. DOI: 10.1007/s10064-007-0116-z
  • Verwaal, W., Mulder, A. 1993. Estimating Rock Strength with the Equotip
  • International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Cilt. 30, No. 10.1016/0148-9062(93)91226-9
  • DOI: [22] Meulenkamp, F., Grima, M.A. 1999. Application of Neural Networks for the Prediction of the Unconfined Compressive Strength (UCS) from Equotip Hardness. International Mining Sciences, Cilt. 36, No. 1, s. 29- 39. DOI: 10.1016/S0148-9062(98) 00173-9
  • Altindag, R. 2002. The Evaluation of Rock Brittleness Concept on Rotary Blast Hole Drills, Journal of The South African Institute of Mining and Metallurgy, Cilt. 102, No. 1, s. 61-66.
  • Altindag, R. 2003. Correlation of Energy Specific
  • Brittleness Concepts on Rock Cutting, Journal of The South African Institute of Mining and Metallurgy, Cilt. 103, No. 3, s.163- 172.
  • Rock [25] Dahl, F., Grİv, E., Breivik, T. 2007. Development of a New Direct Test Method for Estimating Cutter Life, Based on the Sievers’ J Miniature Drill
  • Underground Space Technology, Cilt. 22, No. 1, s. 106–116. DOI: 10.1016/j.tust.2006.03.001
  • and [26] Blindheim, O.T., Bruland, A. 1998. Boreability testing. Norwegian TBM Tunnelling 30 Years of Experience with
  • Tunnelling, s. 29-34, Oslo, Norway.
  • Norwegian [27] Dahl, F. 2003. DRI, BWI, CLI Standard. SINTEF report, Norway, 21 s.
  • Aoki, H., Matsukura, Y. 2007. A New Technique for Non-destructive Field Measurement
  • Strength: An Application of the Equotip
There are 43 citations in total.

Details

Other ID JA49BG55FP
Journal Section Research Article
Authors

Okan Su This is me

Moe Momayez This is me

Publication Date May 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 56

Cite

APA Su, O., & Momayez, M. (2017). KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(56), 519-531.
AMA Su O, Momayez M. KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER. DEUFMD. May 2017;19(56):519-531.
Chicago Su, Okan, and Moe Momayez. “KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 56 (May 2017): 519-31.
EndNote Su O, Momayez M (May 1, 2017) KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 56 519–531.
IEEE O. Su and M. Momayez, “KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER”, DEUFMD, vol. 19, no. 56, pp. 519–531, 2017.
ISNAD Su, Okan - Momayez, Moe. “KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/56 (May 2017), 519-531.
JAMA Su O, Momayez M. KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER. DEUFMD. 2017;19:519–531.
MLA Su, Okan and Moe Momayez. “KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 56, 2017, pp. 519-31.
Vancouver Su O, Momayez M. KAYAÇLARIN EQUOTİP SERTLİK İNDEKSİ İLE MEKANİK ÖZELLİKLERİ VE DELİNEBİLİRLİĞİ ARASINDAKİ İLİŞKİLER. DEUFMD. 2017;19(56):519-31.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.