BibTex RIS Cite

UTILIZATION OF FERMENTATIVE HYDROGEN PRODUCTION FROM Α-CELLULOSE BY COMBINING ANAEROBIC SLUDGE AND CATTLE MANURE

Year 2017, Volume: 19 Issue: 56, 543 - 552, 01.05.2017

Abstract

Batch fermentation experiments were performed for utilizing bio-hydrogen production from α- cellulose solution (2 ±1 g L-1) by combining anaerobic mixed culture and cattle manure. Mixed cultures of anaerobic sludge (AÇ) and cattle manure (SG) were used with different initial biomass ratios, changed between 1/ 2 and 1/ 15, in order to determine the optimum AÇ/ SG ratio yielding the highest hydrogen gas formation and yield. Hydrogen production by only AÇ and SG mixed cultures were also realized along with the combined fermentations by growing them on αcellulose and glucose. The highest hydrogen formation (HF = 10 mmol L-1 culture), hydrogen yield (13 mmol H2 gr-1 cellulose) were obtained with AÇ/ SG ratio of 1/5. Hydrogen fermentations done with strains alone also yielded considerable hydrogen gas amounts, however less than the mixed ones. The best AÇ/SG ratio of 1/5 were tested for its hydrogen gas formation yield, percent cellulose conversion with time and 10.88 mmol H2 L-1culture, 52 %, were found respectively at 192 h. Acetic acid was the highest volatile fatty acid obtained in the experiments

References

  • Kapdan IK, Kargi F. 2006. Biohydrogen waste materials. Enzyme Microb. Technol. Cilt. 38, s. 569-582. DOI:10.1016/j.enzmictec.2005.09. from Kotay S.M., Das D.
  • Biohydrogen as a renewable energy resource - Prospects and potentials. Int J Hydrogen Energy. Cilt. 1016/j.ijhydene.2007.07.031
  • Manish S., Banerjee R. 2008. Comparison of biohydrogen production
  • Hydrogen Energy. Cilt 33, s. 279- 1016/j.ijhydene.2007.07.026
  • Ni M., Leung, D.Y.C., Leung M.K.H., Sumathy K. 2006. An overview of hydrogen biomass. Fuel Process. Technol. Cilt , 1016/j.fuproc.2005.11.003
  • V-Vazquez I, P-Valardo M. 2009. Hydrogen fermentation consortia. Renewable and Sustainable Energy Reviews. Cilt 13:5, s. 1000-1013. DOI: 1016/j.rser.2008.03.003 by
  • Gupta P., Samant K. and Sahu A. Isolation of Cellulose- Degrading Determination of Their Cellulolytic Potential. Int. of Microbiology. International Microbiology. Cilt. 2012, s. 5 sayfa. DOI: 10.1155/2012/578925
  • Levin D. B., Carere C. R., Cicek N., Sparling R. 2009. Challenges for bio-hydrogen production via direct lignocellulose fermentation Int. J.
  • Hydrogen Energy. Cilt 34, s. 7390- , 1016/j.ijhydene.2009.05.091
  • Geng A., He Y., Qian C., Yan X., Zhou Z. 2010. Effect of key factors on hydrogen production from cellulose in a co-culture of
  • Clostridium thermocellum and Clostridium Bioresource :11, 1016/j.biortech.2010.01.042
  • Kaparaju P., Serrano M., Thomsen A. B., Kongjan P., Angelidaki I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept . Bioresource Technology. Cilt 100:9, s. 1016/j.biortech.2008.11.011 DOI: Biohydrogen mesophilic generation anaerobic microcrystalline cellulose. Biotech. and Bioeng. Cilt 74:4, s. 280–287. DOI: 10.1002/bit.1118 of
  • Ren Z, Ward T.E., Logan B.E., Regan J.M. 2007. Characterization of the cellulolytic and hydrogen- producing mesophilic Clostridium species. J
  • Appl Microbiol. Cilt 103: 6, s. 66. DOI: 2007.03477.x of six 1111/j.1365
  • Saratale G.D., Chen S.-D., Lo Y.-C., Saratale R. G.and Chang J. S. 2008.
  • Outlook of biohydrogen production from using dark fermentation- a review. J. Science and Industrial Research. Cilt http://nopr.niscair.res.in/handle/123 /2424 feedstock , s. 979. DOI:
  • Wang A., Gao L., Ren N., Xu J. and Liu production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnology Letters. Cilt 31:9, s. 1321-1326. DOI: 10.1007/s10529-009-0028-z
  • Girija D, Deepa K, Xavier Francis, Antony Irin, Shidh P R. 2013.
  • Analysis of cow dung microbiota— A metagenomic approach Indian Journal of Biotechnology. Cilt. 12, s. 378. http://hdl.handle.net/123456789/ DOI:
  • Hagenkamp-Korth F., Ohl S., Hartung E. 2015. Effects on the biogas and methane production of cattle manure treated with urease inhibitor, Biomass and Bioenergy. Cilt. 75, s. 75-82. DOI: 1016/j.biombioe.2015.02.014
  • León E., Martín M. 2016. Optimal production of power in a combined cycle from manure based biogas, Energy
  • Management. Cilt. 14, s. 89-99. DOI: 1016/j.enconman.2016.02.002
  • Tsapekos P, Kougias P.G, Treu L., Campanaro S., Angelidaki I. 2017. Process comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production, Applied Energy. Cilt. :1, 1016/j.apenergy.2016.10.081 Ozmihci S, Kargi F. 2010a.
  • Comparison of different mixed cultures production from ground wheat starch by combined dark and light fermentation. Biotechnol. Cilt. 37, s. 341-347. DOI: 10.1007/s10295-009-0679-8
  • Ozmihci S, Kargi F. 2010b. Effects of performance of combined fed batch fermentation of ground wheat production. Int. J. Hydrogen Energy. Cilt. 35, s. 1106-1111. DOI: 1016/j.ijhydene.2009.11.048
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric determination of sugars and related substances. Anal Chem Cilt. , for s. –366. DOI: 1021/ac60111a017 Kargi F, Ozmihci S.
  • Utilization of cheese whey powder for ethanol fermentations: effects of operating conditions. Enzyme Microb Technol Cilt. 38, s. 711– DOI: 10.1007/s00449-006- 0
  • Greenberg, A. E., Clesceri, L. S., Eaton, A. D., 2005. Eds. Standard methods for the examination of water and wastewater. 21st edn. American Public Health , s. 939. DOI:
  • Feasibility of hydrogen production in fermentation by natural anaerobes. Bioresource Tecnology. Cilt. 98, s. 2239. 1016/j.biortech.2006.09.039
  • Wang A., Ren N., Shi Y., Lee D-J. Bioaugmented hydrogen production from microcrystalline cellulose Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int. J. Hydrogen Energy. Cilt. 33, s. 912- 1016/j.ijhydene.2007.10.017
  • Ren N.-Q., Xu J.-F., Gao L.- F., Xin L., QiuJ., Su D.-X. 2010., Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int. J. Hydrogen Energy. Cilt. 35:7, s. 2742-2746. DOI: 1016/j.ijhydene.2009.04.057
  • Fan Y.-T., Xing Y., Ma H.-C., Pan C.- M., Hou H.-W. 2008. Enhanced cellulose-hydrogen from corn stalk by lesser panda manure. Int. J. Hydrogen Energy. Cilt. 33:21, s. 6058-6065. DOI: 1016/j.ijhydene.2008.08.005

FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ

Year 2017, Volume: 19 Issue: 56, 543 - 552, 01.05.2017

Abstract

Anaerobik karışık kültür ve sığır gübresi karışımları ile
kesikli deneylerde α-selülozun (2 ±1 g L-1) bio-hidrojen üretim
performansı değerlendirilmiştir. Anaerobik çamur (AÇ) ve sığır
gübresi (SG); 1/ 2- 1/ 15 arasında değişen giriş biyomas
oranlarında karıştırılarak en iyi hidrojen üretim verimi ve
miktarını veren optimum AÇ/ SG oranı saptanmıştır. Ayrıca AÇ ve
SG karıştırılmadan hem α-selüloz hem de glukoz üzerindeki
hidrojen üretimleri, karışımların performansları ile karşılaştırıl
-mıştır. En yüksek hidrojen oluşumu (HF = 10 mmol L-1 kültür),
üretim verimi (13 mmol H2 g
-1 selüloz) AÇ/SG oranı 1/5
olduğunda elde edilmiştir. Kültürler ayrı ayrı, kayda değer
hidrojen üretim verimleri vermesine rağmen, karışımlardan daha
düşük değerlerde kalmıştır. Deneyler sonucuda elde edilen en iyi
AÇ/ SG oranı olan 1/5 ile yeni bir deney yapılmış ve zamana karşı
hidrojen üretim performansını belirleyen değerlerden hidrojen
üretimi, yüzde selüloz dönüşümü, 192. saatte sırasıyla 10.88
mmol H2 L-1 kültür ve %52 olarak bulunmuştur. Asetik asit en
yüksek uçucu yağ asidi olarak tayin edilmiştir

References

  • Kapdan IK, Kargi F. 2006. Biohydrogen waste materials. Enzyme Microb. Technol. Cilt. 38, s. 569-582. DOI:10.1016/j.enzmictec.2005.09. from Kotay S.M., Das D.
  • Biohydrogen as a renewable energy resource - Prospects and potentials. Int J Hydrogen Energy. Cilt. 1016/j.ijhydene.2007.07.031
  • Manish S., Banerjee R. 2008. Comparison of biohydrogen production
  • Hydrogen Energy. Cilt 33, s. 279- 1016/j.ijhydene.2007.07.026
  • Ni M., Leung, D.Y.C., Leung M.K.H., Sumathy K. 2006. An overview of hydrogen biomass. Fuel Process. Technol. Cilt , 1016/j.fuproc.2005.11.003
  • V-Vazquez I, P-Valardo M. 2009. Hydrogen fermentation consortia. Renewable and Sustainable Energy Reviews. Cilt 13:5, s. 1000-1013. DOI: 1016/j.rser.2008.03.003 by
  • Gupta P., Samant K. and Sahu A. Isolation of Cellulose- Degrading Determination of Their Cellulolytic Potential. Int. of Microbiology. International Microbiology. Cilt. 2012, s. 5 sayfa. DOI: 10.1155/2012/578925
  • Levin D. B., Carere C. R., Cicek N., Sparling R. 2009. Challenges for bio-hydrogen production via direct lignocellulose fermentation Int. J.
  • Hydrogen Energy. Cilt 34, s. 7390- , 1016/j.ijhydene.2009.05.091
  • Geng A., He Y., Qian C., Yan X., Zhou Z. 2010. Effect of key factors on hydrogen production from cellulose in a co-culture of
  • Clostridium thermocellum and Clostridium Bioresource :11, 1016/j.biortech.2010.01.042
  • Kaparaju P., Serrano M., Thomsen A. B., Kongjan P., Angelidaki I. Bioethanol, biohydrogen and biogas production from wheat straw in a biorefinery concept . Bioresource Technology. Cilt 100:9, s. 1016/j.biortech.2008.11.011 DOI: Biohydrogen mesophilic generation anaerobic microcrystalline cellulose. Biotech. and Bioeng. Cilt 74:4, s. 280–287. DOI: 10.1002/bit.1118 of
  • Ren Z, Ward T.E., Logan B.E., Regan J.M. 2007. Characterization of the cellulolytic and hydrogen- producing mesophilic Clostridium species. J
  • Appl Microbiol. Cilt 103: 6, s. 66. DOI: 2007.03477.x of six 1111/j.1365
  • Saratale G.D., Chen S.-D., Lo Y.-C., Saratale R. G.and Chang J. S. 2008.
  • Outlook of biohydrogen production from using dark fermentation- a review. J. Science and Industrial Research. Cilt http://nopr.niscair.res.in/handle/123 /2424 feedstock , s. 979. DOI:
  • Wang A., Gao L., Ren N., Xu J. and Liu production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Biotechnology Letters. Cilt 31:9, s. 1321-1326. DOI: 10.1007/s10529-009-0028-z
  • Girija D, Deepa K, Xavier Francis, Antony Irin, Shidh P R. 2013.
  • Analysis of cow dung microbiota— A metagenomic approach Indian Journal of Biotechnology. Cilt. 12, s. 378. http://hdl.handle.net/123456789/ DOI:
  • Hagenkamp-Korth F., Ohl S., Hartung E. 2015. Effects on the biogas and methane production of cattle manure treated with urease inhibitor, Biomass and Bioenergy. Cilt. 75, s. 75-82. DOI: 1016/j.biombioe.2015.02.014
  • León E., Martín M. 2016. Optimal production of power in a combined cycle from manure based biogas, Energy
  • Management. Cilt. 14, s. 89-99. DOI: 1016/j.enconman.2016.02.002
  • Tsapekos P, Kougias P.G, Treu L., Campanaro S., Angelidaki I. 2017. Process comparative metagenomic analysis during co-digestion of manure and lignocellulosic biomass for biogas production, Applied Energy. Cilt. :1, 1016/j.apenergy.2016.10.081 Ozmihci S, Kargi F. 2010a.
  • Comparison of different mixed cultures production from ground wheat starch by combined dark and light fermentation. Biotechnol. Cilt. 37, s. 341-347. DOI: 10.1007/s10295-009-0679-8
  • Ozmihci S, Kargi F. 2010b. Effects of performance of combined fed batch fermentation of ground wheat production. Int. J. Hydrogen Energy. Cilt. 35, s. 1106-1111. DOI: 1016/j.ijhydene.2009.11.048
  • Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. 1956. Colorimetric determination of sugars and related substances. Anal Chem Cilt. , for s. –366. DOI: 1021/ac60111a017 Kargi F, Ozmihci S.
  • Utilization of cheese whey powder for ethanol fermentations: effects of operating conditions. Enzyme Microb Technol Cilt. 38, s. 711– DOI: 10.1007/s00449-006- 0
  • Greenberg, A. E., Clesceri, L. S., Eaton, A. D., 2005. Eds. Standard methods for the examination of water and wastewater. 21st edn. American Public Health , s. 939. DOI:
  • Feasibility of hydrogen production in fermentation by natural anaerobes. Bioresource Tecnology. Cilt. 98, s. 2239. 1016/j.biortech.2006.09.039
  • Wang A., Ren N., Shi Y., Lee D-J. Bioaugmented hydrogen production from microcrystalline cellulose Clostridium acetobutylicum X9 and Ethanoigenens harbinense B49. Int. J. Hydrogen Energy. Cilt. 33, s. 912- 1016/j.ijhydene.2007.10.017
  • Ren N.-Q., Xu J.-F., Gao L.- F., Xin L., QiuJ., Su D.-X. 2010., Fermentative bio-hydrogen production from cellulose by cow dung compost enriched cultures. Int. J. Hydrogen Energy. Cilt. 35:7, s. 2742-2746. DOI: 1016/j.ijhydene.2009.04.057
  • Fan Y.-T., Xing Y., Ma H.-C., Pan C.- M., Hou H.-W. 2008. Enhanced cellulose-hydrogen from corn stalk by lesser panda manure. Int. J. Hydrogen Energy. Cilt. 33:21, s. 6058-6065. DOI: 1016/j.ijhydene.2008.08.005
There are 32 citations in total.

Details

Other ID JA73BG43JT
Journal Section Research Article
Authors

Serpil Özmıhçı This is me

Publication Date May 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 56

Cite

APA Özmıhçı, S. (2017). FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(56), 543-552.
AMA Özmıhçı S. FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ. DEUFMD. May 2017;19(56):543-552.
Chicago Özmıhçı, Serpil. “FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 56 (May 2017): 543-52.
EndNote Özmıhçı S (May 1, 2017) FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 56 543–552.
IEEE S. Özmıhçı, “FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ”, DEUFMD, vol. 19, no. 56, pp. 543–552, 2017.
ISNAD Özmıhçı, Serpil. “FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/56 (May 2017), 543-552.
JAMA Özmıhçı S. FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ. DEUFMD. 2017;19:543–552.
MLA Özmıhçı, Serpil. “FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 56, 2017, pp. 543-52.
Vancouver Özmıhçı S. FERMENTATİF HİDROJEN ÜRETİMİNİN Α-SELÜLOZ İLE ANAEROBİK ÇAMUR VE SIĞIR GÜBRESİ KARIŞIMLARINI KULLANARAK DEĞERLENDİRİLMESİ. DEUFMD. 2017;19(56):543-52.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.