BibTex RIS Cite

A SURVEY ON MARKER-BASED TRACKING SYSTEMS IN AUGMENTED REALITY AND DESIGN OF MULTI-LAYER MARKER MODEL

Year 2017, Volume: 19 Issue: 56, 599 - 619, 01.05.2017

Abstract

Augmented reality is a technology which allows virtual contents generated by computer to be displayed on the real world in real time using computer vision techniques. Tracking methods play an important role in augmented reality applications. In this work, a survey on marker-based tracking systems in augmented reality is presented and a multi-layer marker model is proposed. Multi-layer marker model enables details of the virtual contents displayed on the real world to be seen closely and prevention of image loss occurring when moved away from the marker. Tracking distances are given for markers in each layer. Inner layer and outer layer give good results for short distances and long distances, respectively

References

  • Akbaş, M.F. 2011. Mobil Cihazlar Üzerinde Gerçeklik Geliştirme. Uluslararası Bilgisayar Enstitüsü, Yüksek Lisans Tezi, 103s, İzmir.
  • Azuma, R. 1997. A Survey of Augmented Reality, Teleoperators and Virtual Environments, Cilt. 6, No. 4, s. 355-385.
  • Milgram, P., Kishino, F. 1994. A Taxonomy of Mixed Reality Visual Displays, IEICE Transactions on Information Systems, s. 1321-1329.
  • Ege, B. Şubat 2014. Arttırılmış Gerçeklik, Bilim ve Teknik Dergisi.
  • L. Frank Baum’s “The Master Key” Imagines a Kind of Augmented Reality. http://historyofinformation.com/ex panded.php?id=4698 Tarihi: 01.04.2016). (Erişim
  • Sensorama Machine. http://www.mortonheilig.com/Inve ntorVR.html (Erişim Tarihi: 01.04.2016).
  • Sutherland, I. 1968. A Head- Mounted Display, AFIPS 68: Fall Joint Computer Conference, s. 757-764. [8] Krueger, M., Gionfriddo, T., Hinrichsen, K. 1985. Videoplace - An Artificial Reality, SIGCHI Conference on Human Factors in Computing Systems, s. 35-40. [9] History of Virtual Reality. http://www.vrs.org.uk/virtual- reality/history.html (Erişim Tarihi: 01.04.2016).
  • Caudell, T.P., Mizell, D.W. 1992. Augmented Reality: An Application of Heads-Up Display Technology to Manual Manufacturing Processes, Twenty-Fifth Hawaii International Conference on System Sciences, Cilt. 2, s. 659-669.
  • Rosenberg, L.B. 1993. Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation, IEEE Virtual Reality Annual International Symposium, s. 76-82.
  • Feiner, S., MacIntyre, B., Seligmann, D. Augmented Communications of the ACM, Cilt. 36, No. 7, s. 53-62. Reality,
  • Barrilleaux, J. Experiences and Observations Augmented Reality to Live Training http://jmbaai.com/vwsim99/vwsi m99.html 01.04.2016). Applying (Erişim Tarihi:
  • Sung, D. The History of Augmented Reality. lint.com/news/108888-the-history- of-augmented-reality (Erişim Tarihi: 01.04.2016).
  • Raskar, R., Welch, G., Fuchs, H. 1998. Spatially Augmented Reality, First IEEE International Workshop on Augmented Reality (IWAR 98), s. 11-20.
  • ARToolKit. http://www.hitl.washington.edu/ar toolkit (Erişim Tarihi: 01.04.2016).
  • Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P., Morris, M., Piekarski, W. 2000. ARQuake: An Outdoor/Indoor Augmented Reality First Person Application, Fourth International Wearable Computers, s. 139-146. on
  • Mallem, M. 2010. Augmented Issues, Reality: Challanges, Conference on Image Processing Theory Tools and Applications (IPTA), s. 8. and 2nd International
  • Alkhamisi, A.O., Monowar, M.M. 2013. Rise of Augmented Reality: Current and Future Application Areas, International Journal of Internet and Distributed Systems (IJIDS), Cilt. 1, No. 4, s. 25-34.
  • Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B. 2001. Augmented Reality, IEEE Computer Graphics and Applications, Cilt. 21, No. 6, s. 34-47. in
  • Ercan, M. 2010. A 3D Topological Tracking System for Augmented Reality. Üniversitesi, Bilgisayar Mühendisliği Bölümü, Yüksek Lisans Tezi, 61s, Ankara. Teknik [34] Azuma, R. 1993. for Reality, Communications of the ACM, Cilt. 36, No. 7, s. 50-51.
  • Rabbi, I., Ullah, S. 2013. A Survey on Augmented Reality Challenges and Tracking, Acta Graphica, Cilt. 24, No. 1-2, s. 29-46.
  • Cawood, S., Fiala, M. 2008. Augmented Reality: A Practical Guide, The Pragmatic Bookshelf, 1st Edition, 328s.
  • Güngör, C., Kurt, M. 2014. Mobil Cihazlarda Gerçeklik Algısının 3 Boyutlu Kırmızı-Camgöbeği Gözlükler ile Arttırılması, 22nd IEEE Signal Processing and Communications Applications Conference (SUI 2014), s. 1706-1709. Arttırılmış
  • Owen, C., Xiao, F., Middlin, P. 2002. What is the Best Fiducial?, The First IEEE International Workshop on Augmented Reality Toolkit, s. 98- 105.
  • Fiala, M. 2010. Designing Highly Reliable Fiducial Markers, IEEE Transactions on Pattern Analysis and Machine Intelligence, Cilt. 32, No. 7, s. 1317-1324.
  • Cho, Y., Neumann, U. 1998. Multi- ring Color Fiducial Systems for Scalable Augmented Reality, IEEE Virtual Reality Symposium, s. 212. Tracking Annual International
  • Naimark, L., Foxlin, E. 2002. Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable Tracker, International Symposium on Mixed and Augmented Reality (ISMAR 2002), s. 27-36. Self
  • Ababsa, F., Mallem, M. 2008. A Robust Circular Fiducial Detection Technique and Real-Time 3D Camera Multimedia, Cilt. 3, No. 4, s. 34-41. Journal of
  • ARToolKit. http://www.hitl.washington.edu/ar toolkit/documentation/devmulti.ht m (Erişim Tarihi: 01.04.2016).
  • Kato, H., Billinghurst, M. 1999. Tracking Marker Calibration for a Video-based Augmented Reality Conferencing System, 2nd IEEE and ACM International Augmented Reality (IWAR 99), s. 85-94.
  • ARToolKit. and HMD Workshop on http://www.hitl.washington.edu/ar toolkit/documentation/tutorialmult i.htm (Erişim Tarihi: 01.04.2016).
  • Rekimoto, J., Ayatsuka, Y. 2000. CyberCode: Designing Augmented Reality Environments with Visual Tags, Conference on Designing Augmented Reality Environments (DARE 2000), s. 1-10.
  • Claus, D., Fitzgibbon, A.W. 2004. Reliable Fiducial Detection in Natural Scenes, 8th European Conference on Computer Vision (ECCV 2004), s. 469-480.
  • Fiala, M. 2005. ARTag, A Fiducial Marker System Using Digital Techniques, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), s. 590-596.
  • Neto, V.F.d.C, Mesquita, D.B.d, Garcia, R.F, Campos, M.F.M. 2010. On the Design and Evaluation of a Precise Scalable Fiducial Marker Framework, Conference on Graphics, Patterns and Images, s. 216-223. SIBGRAPI
  • Jo, K., Kakehi, Y., Minamizawa, K., Nii, H., Kawakami, N., Tachi, S. 2008. ARForce: Augmented Reality System for Force Distribution Input, International Conference Computer Technology (ACE 2008), s. 160-165.
  • Tateno, K., Kitahara, I., Ohta, Y. 2007. A Nested Marker for Augmented Reality, IEEE Virtual Reality Conference (VR 07), s. 259- 262.
  • Herout, A., Zacharias, M., Dubska, M., Havel, J. 2012. Fractal Marker Fields: No More Scale Limitations for International Symposium on Mixed and Augmented Reality (ISMAR 2012), s. 285-286. IEEE
  • Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D. 2008. Pose Tracking from Natural Features on Mobile Phones, 7th IEEE/ACM Symposium International Augmented Reality (ISMAR 2008), s. 125-134. and
  • Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D. 2010. Real-Time Detection and Tracking for Augmented Reality on Mobile Phones, IEEE Transactions on Visualization and Computer Graphics, Cilt. 16, No. 3, s. 355-368.
  • Beier, D., Billert, R., Bruderlin, B., Stichling, D., Kleinjohann, B. 2003. Marker-less Vision Based Tracking for Mobile Augmented Reality, The Second IEEE and ACM International Symposium Augmented Reality, s. 258-259. and
  • OpenGL. http://www.opengl.org (Erişim Tarihi: 01.04.2016).
  • Fiala, M. 2005. Comparing ARTag and ARToolKit Plus Fiducial Marker Systems, Workshop on Haptic Audio Visual Enviroments and their Applications (HAVE 2005), s. 148-153.
  • ARToolKit. http://www.hitl.washington.edu/ar toolkit/documentation/userarwork. htm (Erişim Tarihi: 01.04.2016).
  • Malbezin, P., Piekarski, W., Thomas, B.H. 2002. Measuring ARToolKit Accuracy in Long Distance Tracking Experiments, International Augmented Reality Toolkit. IEEE on Workshop
  • Khan, D., Ullah, S., Rabbi, I. 2015. Factors Affecting the Design and Tracking of ARToolKit Markers, Computer Standards & Interfaces, Cilt. 41, s. 56-66.

ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ

Year 2017, Volume: 19 Issue: 56, 599 - 619, 01.05.2017

Abstract

Arttırılmış gerçeklik, bilgisayarlı görü teknikleri kullanılarak, bilgisayar ortamında oluşturulan sanal içeriklerin, gerçek görüntülenebilmesine olanak sağlayan bir teknolojidir. Takip yöntemleri arttırılmış gerçeklik uygulamalarında önemli bir rol oynamaktadır. Bu çalışma kapsamında, arttırılmış gerçeklikte işaretçi tabanlı takip sistemleri üzerine bir literatür çalışması yapılmakta ve tasarlanan çok katmanlı işaretçi modeli tanıtılmaktadır. Çok katmanlı işaretçi modeli, gerçek dünya üzerine düşürülen sanal içeriklerin detaylarının yakından görülmesini ve işaretçiden uzaklaşıldığında oluşan görüntü kaybının önüne geçilmesini sağlamaktadır. Her bir katmanda bulunan işaretçi için görüntülemenin yapılabildiği takip mesafelerine çalışmada yer verilmektedir. İç katman kısa mesafeler için, dış katman uzak mesafeler için başarılı sonuçlar vermektedir

References

  • Akbaş, M.F. 2011. Mobil Cihazlar Üzerinde Gerçeklik Geliştirme. Uluslararası Bilgisayar Enstitüsü, Yüksek Lisans Tezi, 103s, İzmir.
  • Azuma, R. 1997. A Survey of Augmented Reality, Teleoperators and Virtual Environments, Cilt. 6, No. 4, s. 355-385.
  • Milgram, P., Kishino, F. 1994. A Taxonomy of Mixed Reality Visual Displays, IEICE Transactions on Information Systems, s. 1321-1329.
  • Ege, B. Şubat 2014. Arttırılmış Gerçeklik, Bilim ve Teknik Dergisi.
  • L. Frank Baum’s “The Master Key” Imagines a Kind of Augmented Reality. http://historyofinformation.com/ex panded.php?id=4698 Tarihi: 01.04.2016). (Erişim
  • Sensorama Machine. http://www.mortonheilig.com/Inve ntorVR.html (Erişim Tarihi: 01.04.2016).
  • Sutherland, I. 1968. A Head- Mounted Display, AFIPS 68: Fall Joint Computer Conference, s. 757-764. [8] Krueger, M., Gionfriddo, T., Hinrichsen, K. 1985. Videoplace - An Artificial Reality, SIGCHI Conference on Human Factors in Computing Systems, s. 35-40. [9] History of Virtual Reality. http://www.vrs.org.uk/virtual- reality/history.html (Erişim Tarihi: 01.04.2016).
  • Caudell, T.P., Mizell, D.W. 1992. Augmented Reality: An Application of Heads-Up Display Technology to Manual Manufacturing Processes, Twenty-Fifth Hawaii International Conference on System Sciences, Cilt. 2, s. 659-669.
  • Rosenberg, L.B. 1993. Virtual Fixtures: Perceptual Tools for Telerobotic Manipulation, IEEE Virtual Reality Annual International Symposium, s. 76-82.
  • Feiner, S., MacIntyre, B., Seligmann, D. Augmented Communications of the ACM, Cilt. 36, No. 7, s. 53-62. Reality,
  • Barrilleaux, J. Experiences and Observations Augmented Reality to Live Training http://jmbaai.com/vwsim99/vwsi m99.html 01.04.2016). Applying (Erişim Tarihi:
  • Sung, D. The History of Augmented Reality. lint.com/news/108888-the-history- of-augmented-reality (Erişim Tarihi: 01.04.2016).
  • Raskar, R., Welch, G., Fuchs, H. 1998. Spatially Augmented Reality, First IEEE International Workshop on Augmented Reality (IWAR 98), s. 11-20.
  • ARToolKit. http://www.hitl.washington.edu/ar toolkit (Erişim Tarihi: 01.04.2016).
  • Thomas, B., Close, B., Donoghue, J., Squires, J., De Bondi, P., Morris, M., Piekarski, W. 2000. ARQuake: An Outdoor/Indoor Augmented Reality First Person Application, Fourth International Wearable Computers, s. 139-146. on
  • Mallem, M. 2010. Augmented Issues, Reality: Challanges, Conference on Image Processing Theory Tools and Applications (IPTA), s. 8. and 2nd International
  • Alkhamisi, A.O., Monowar, M.M. 2013. Rise of Augmented Reality: Current and Future Application Areas, International Journal of Internet and Distributed Systems (IJIDS), Cilt. 1, No. 4, s. 25-34.
  • Azuma, R., Baillot, Y., Behringer, R., Feiner, S., Julier, S., MacIntyre, B. 2001. Augmented Reality, IEEE Computer Graphics and Applications, Cilt. 21, No. 6, s. 34-47. in
  • Ercan, M. 2010. A 3D Topological Tracking System for Augmented Reality. Üniversitesi, Bilgisayar Mühendisliği Bölümü, Yüksek Lisans Tezi, 61s, Ankara. Teknik [34] Azuma, R. 1993. for Reality, Communications of the ACM, Cilt. 36, No. 7, s. 50-51.
  • Rabbi, I., Ullah, S. 2013. A Survey on Augmented Reality Challenges and Tracking, Acta Graphica, Cilt. 24, No. 1-2, s. 29-46.
  • Cawood, S., Fiala, M. 2008. Augmented Reality: A Practical Guide, The Pragmatic Bookshelf, 1st Edition, 328s.
  • Güngör, C., Kurt, M. 2014. Mobil Cihazlarda Gerçeklik Algısının 3 Boyutlu Kırmızı-Camgöbeği Gözlükler ile Arttırılması, 22nd IEEE Signal Processing and Communications Applications Conference (SUI 2014), s. 1706-1709. Arttırılmış
  • Owen, C., Xiao, F., Middlin, P. 2002. What is the Best Fiducial?, The First IEEE International Workshop on Augmented Reality Toolkit, s. 98- 105.
  • Fiala, M. 2010. Designing Highly Reliable Fiducial Markers, IEEE Transactions on Pattern Analysis and Machine Intelligence, Cilt. 32, No. 7, s. 1317-1324.
  • Cho, Y., Neumann, U. 1998. Multi- ring Color Fiducial Systems for Scalable Augmented Reality, IEEE Virtual Reality Symposium, s. 212. Tracking Annual International
  • Naimark, L., Foxlin, E. 2002. Circular Data Matrix Fiducial System and Robust Image Processing for a Wearable Tracker, International Symposium on Mixed and Augmented Reality (ISMAR 2002), s. 27-36. Self
  • Ababsa, F., Mallem, M. 2008. A Robust Circular Fiducial Detection Technique and Real-Time 3D Camera Multimedia, Cilt. 3, No. 4, s. 34-41. Journal of
  • ARToolKit. http://www.hitl.washington.edu/ar toolkit/documentation/devmulti.ht m (Erişim Tarihi: 01.04.2016).
  • Kato, H., Billinghurst, M. 1999. Tracking Marker Calibration for a Video-based Augmented Reality Conferencing System, 2nd IEEE and ACM International Augmented Reality (IWAR 99), s. 85-94.
  • ARToolKit. and HMD Workshop on http://www.hitl.washington.edu/ar toolkit/documentation/tutorialmult i.htm (Erişim Tarihi: 01.04.2016).
  • Rekimoto, J., Ayatsuka, Y. 2000. CyberCode: Designing Augmented Reality Environments with Visual Tags, Conference on Designing Augmented Reality Environments (DARE 2000), s. 1-10.
  • Claus, D., Fitzgibbon, A.W. 2004. Reliable Fiducial Detection in Natural Scenes, 8th European Conference on Computer Vision (ECCV 2004), s. 469-480.
  • Fiala, M. 2005. ARTag, A Fiducial Marker System Using Digital Techniques, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), s. 590-596.
  • Neto, V.F.d.C, Mesquita, D.B.d, Garcia, R.F, Campos, M.F.M. 2010. On the Design and Evaluation of a Precise Scalable Fiducial Marker Framework, Conference on Graphics, Patterns and Images, s. 216-223. SIBGRAPI
  • Jo, K., Kakehi, Y., Minamizawa, K., Nii, H., Kawakami, N., Tachi, S. 2008. ARForce: Augmented Reality System for Force Distribution Input, International Conference Computer Technology (ACE 2008), s. 160-165.
  • Tateno, K., Kitahara, I., Ohta, Y. 2007. A Nested Marker for Augmented Reality, IEEE Virtual Reality Conference (VR 07), s. 259- 262.
  • Herout, A., Zacharias, M., Dubska, M., Havel, J. 2012. Fractal Marker Fields: No More Scale Limitations for International Symposium on Mixed and Augmented Reality (ISMAR 2012), s. 285-286. IEEE
  • Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D. 2008. Pose Tracking from Natural Features on Mobile Phones, 7th IEEE/ACM Symposium International Augmented Reality (ISMAR 2008), s. 125-134. and
  • Wagner, D., Reitmayr, G., Mulloni, A., Drummond, T., Schmalstieg, D. 2010. Real-Time Detection and Tracking for Augmented Reality on Mobile Phones, IEEE Transactions on Visualization and Computer Graphics, Cilt. 16, No. 3, s. 355-368.
  • Beier, D., Billert, R., Bruderlin, B., Stichling, D., Kleinjohann, B. 2003. Marker-less Vision Based Tracking for Mobile Augmented Reality, The Second IEEE and ACM International Symposium Augmented Reality, s. 258-259. and
  • OpenGL. http://www.opengl.org (Erişim Tarihi: 01.04.2016).
  • Fiala, M. 2005. Comparing ARTag and ARToolKit Plus Fiducial Marker Systems, Workshop on Haptic Audio Visual Enviroments and their Applications (HAVE 2005), s. 148-153.
  • ARToolKit. http://www.hitl.washington.edu/ar toolkit/documentation/userarwork. htm (Erişim Tarihi: 01.04.2016).
  • Malbezin, P., Piekarski, W., Thomas, B.H. 2002. Measuring ARToolKit Accuracy in Long Distance Tracking Experiments, International Augmented Reality Toolkit. IEEE on Workshop
  • Khan, D., Ullah, S., Rabbi, I. 2015. Factors Affecting the Design and Tracking of ARToolKit Markers, Computer Standards & Interfaces, Cilt. 41, s. 56-66.
There are 45 citations in total.

Details

Other ID JA54VU54NH
Journal Section Research Article
Authors

Muhammet Fatih Akbaş This is me

Cengiz Güngör This is me

Publication Date May 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 56

Cite

APA Akbaş, M. F., & Güngör, C. (2017). ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(56), 599-619.
AMA Akbaş MF, Güngör C. ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ. DEUFMD. May 2017;19(56):599-619.
Chicago Akbaş, Muhammet Fatih, and Cengiz Güngör. “ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 56 (May 2017): 599-619.
EndNote Akbaş MF, Güngör C (May 1, 2017) ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 56 599–619.
IEEE M. F. Akbaş and C. Güngör, “ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ”, DEUFMD, vol. 19, no. 56, pp. 599–619, 2017.
ISNAD Akbaş, Muhammet Fatih - Güngör, Cengiz. “ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/56 (May 2017), 599-619.
JAMA Akbaş MF, Güngör C. ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ. DEUFMD. 2017;19:599–619.
MLA Akbaş, Muhammet Fatih and Cengiz Güngör. “ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 56, 2017, pp. 599-1.
Vancouver Akbaş MF, Güngör C. ARTTIRILMIŞ GERÇEKLİKTE İŞARETÇİ TABANLI TAKİP SİSTEMLERİ ÜZERİNE BİR LİTERATÜR ÇALIŞMASI VE TASARLANAN ÇOK KATMANLI İŞARETÇİ MODELİ. DEUFMD. 2017;19(56):599-61.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.