BibTex RIS Cite

Solution of the Economic Load Dispatch Problems with Artificial Cooperative Search Algorithm

Year 2017, Volume: 19 Issue: 55, 16 - 27, 01.01.2017

Abstract

Economic Load Dispatch (ELD) problem deals with meeting the load demand by optimizing the operation of different power generation units at the minimum operating cost. Caused by the effect of valve-points and prohibited operation zone in the generating units’ cost functions, ELD problem is a non-linear and non-convex optimization problem. In this paper, Artificial Cooperative Search (ACS) algorithm is proposed to solve ELD problem. Proposed method, is a Swarm Intelligence-based metaheuristic algorithm, based on the interaction between prey and predator organisms in a habitat, being effective at global search. The effectiveness of the proposed method on ELD problem is examined by applying on two different test generation systems. The results show that ACS algorithm gives lower generation cost than other optimization algorithms in the literature

References

  • Rajkumar M. 2011. Combined Economic Emission Dispatch using Modified Multi-Objective Genetic Algorithm,Kalasalingam Üniversitesi, Elektrik Doktora Tezi, Kalasalingam. Bölümü,
  • Aydın, D., Ozyon, S., Yasar, C., Liao, T. 2014. algorithm with dynamic population size to Combined Economic and Emission Dispatch, International Journal of Electrical Power and Energy Systems, Cilt. 54, s.144-153.
  • Bhattacharjee, K., Bhattacharya, A., Halder nee Dey, S. 2014. Solutions of Economic Emission Load Dispatch problems of power systems by Real Coded algorithm, International Journal of Electrical Power and Energy Systems, Cilt. 59, s.176-187. Reaction
  • Chen, C.L., Wang, S.C. 1993. Branch- and-bound Scheduling for Thermal Generating Units, IEEE Transactions on Energy Conversion,Cilt. 8, s.184- 186.
  • Dodu, J.C., Martin, P., Merlin, A., Pouget, J. 1972. An optimal formulation and solution of short- range operating problems for a power system with flow constraints, Proceedings of the IEEE, Cilt. 60, s.53-54.
  • Nanda, J., Hari, L., Kothimari, M.L. 1994. Economic Emission Dispatch with line flow constraints using a classical technique, IEEE Proceedings on Generation, Transmission and Distribution, Cilt. 141, s. 1-10.
  • Wong, K.P., Fong, C.C. 1993. Simulated Annealing based Economic Dispatch algorithm, Proceedings, Cilt. 140, s. 509-515. Conference
  • Panigrahi, C.K., Chattopadhyay, P.K., Chakrabarti, R.N., Basu, M. 2006. Simulated Annealing Technique for dynamic economic dispatch, Electric Power Components and Systems, Cilt. 34, s.577-586.
  • Panigrahi, C.K., Pandi, V.R., Das, S. 2008. Adaptive particle swarm optimization approach for static and dynamic economic load dispatch, Energy Conversion and Management, Cilt. 49, s.1407-1415.
  • Park, J.B. 2005. A particle swarm optimization for economic dispatch with non-smooth cost functions, IEEE Transactions on Power Systems, Cilt. 20, s.34-42.
  • Mahidhar, V., Reddy, G.S. 2007. Economic load dispatch with valve point effects and ramp rates using new approach in PSO, International Journal of Engineering Research & Technology (IJERT),Cilt. 1, s.357-360.
  • Hemamalini, S., Simon, S.P. 2010. Artificial bee colony algorithm for economic load dispatch problem with non-smooth cost functions, Electric Power Components and Systems, Cilt. 38, s.786-803.
  • Coelho, L.S., Mariani, V.C. 2009. An improved algorithm for power economic load dispatch, Energy Conversion and Management, Cilt. 50, s.2522-2526.
  • Chakraborty, P., Roy, G.G., Panigrahi, B.K., Bansal, B.C., Mohapatra, A. 2012. Dynamic economic dispatch using harmony search algorithm with modified differential mutation operator, Electrical Engineering, Cilt. 94, s.197-205.
  • Civicioglu, P. 2013. Artificial cooperative searh algorithm for numerical optimization problems, Information Sciences, Cilt. 229, s.58- 76.
  • Fraga, E.S., Yang, L., Papageorgiou, L.G. 2012. On the modelling of valve point loadings for power electricity dispatch, Applied Energy, Cilt. 91,s. 301-303.
  • Civicioglu, P., Besdok, E. 2013. A conceptual comparison of the Cuckoo-search, optimization, differential evolution and artificial bee colony algorithms, Artificial Intelligence Review, Cilt. 39, No. 4, s.315-346. swarm
  • Yu, J.J.Q., Li, V.O.K. 2013. A Social
  • Spider Algorithm for Solving the Non-convex
  • Load Dispatch Problem, arXiv e
  • Print archive. Economic
  • Amjady, N., Sharifzadeh, H. 2010. Solution of non-convex economic dispatch problem considering valve point effect by a new Modified Differential Evolution algorithm, Electrical Power and Energy Systems, Cilt. 32, s.839-903.
  • Reddy, S.A., Vaisakh, K. 2013. Shuffled differential evolution for large scale economic dispatch, Electric Power Systems Research, Cilt. 96, s. 237-245.
  • Mohammadi-Ivatloaa, B., Rabiee, A., Soroud, A., Ehsana, M. 2012. Iteration PSO with time varying acceleration coefficients for solving non-convex problems, Electrical Power and Energy Systems, Cilt. 42, s. 508-516.
  • Xiong, G., Shi, D., Duan, X. 2013. Multi-strategy biogeography-based for economic dispatch problems, Applied Energy, Cilt. 111.,s. 801-811.
  • Al-Sumait, J.S., Al-Othman, A.K., Sykulski, J.K. 2002. Application of pattern search method to power system valve-point economic load dispatch, Electrical Power and Energy Systems, Cilt. 62, No. 3, s. 201-207.
  • Bhattacharya, A., Chattopadhyay, P.K. 2010. Hybrid differential evolution with biogeography-based optimization economic load dispatch, IEEE Transactions on Power Systems, Cilt. 25, No. 4, s. 1955-1964. of

Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması ile Çözümü

Year 2017, Volume: 19 Issue: 55, 16 - 27, 01.01.2017

Abstract

Ekonomik Yük Dağıtımı (EYD) problemi, farklı kapasitelerdeki güç üretim ünitelerinin işletiminin, toplam elektrik talebini en az maliyet ile sağlayacak şekilde en iyilenmesi ile ilgilenir. Üretim ünitelerinin maliyet fonksiyonlarında yer alan valf kısma etkileri ve yasaklı çalışma alanları nedeni ile EYD problemi doğrusal ve konveks olmayan bir en iyileme problemidir. Bu çalışmada, Yapay İşbirlikçi Algoritması (YİA) EYD probleminin çözülmesi amacı ile önerilmiştir. Önerilen yöntem, sürü zekası tabanlı, bir habitatta bulunan av ve avcı ilişkisine dayanan, bütünsel aramada etkili bir üstsezgisel optimizasyon algoritmasıdır. Yöntemin EYD problemindeki etkinliği, iki farklı test üretim sistemine uygulanarak gösterilmiştir. Elde edilen sonuçlar, YİA ile literatürde yer alan diğer en iyileme algoritmalarına göre daha düşük işletim maliyeti elde edileceğini ortaya koymaktadır

References

  • Rajkumar M. 2011. Combined Economic Emission Dispatch using Modified Multi-Objective Genetic Algorithm,Kalasalingam Üniversitesi, Elektrik Doktora Tezi, Kalasalingam. Bölümü,
  • Aydın, D., Ozyon, S., Yasar, C., Liao, T. 2014. algorithm with dynamic population size to Combined Economic and Emission Dispatch, International Journal of Electrical Power and Energy Systems, Cilt. 54, s.144-153.
  • Bhattacharjee, K., Bhattacharya, A., Halder nee Dey, S. 2014. Solutions of Economic Emission Load Dispatch problems of power systems by Real Coded algorithm, International Journal of Electrical Power and Energy Systems, Cilt. 59, s.176-187. Reaction
  • Chen, C.L., Wang, S.C. 1993. Branch- and-bound Scheduling for Thermal Generating Units, IEEE Transactions on Energy Conversion,Cilt. 8, s.184- 186.
  • Dodu, J.C., Martin, P., Merlin, A., Pouget, J. 1972. An optimal formulation and solution of short- range operating problems for a power system with flow constraints, Proceedings of the IEEE, Cilt. 60, s.53-54.
  • Nanda, J., Hari, L., Kothimari, M.L. 1994. Economic Emission Dispatch with line flow constraints using a classical technique, IEEE Proceedings on Generation, Transmission and Distribution, Cilt. 141, s. 1-10.
  • Wong, K.P., Fong, C.C. 1993. Simulated Annealing based Economic Dispatch algorithm, Proceedings, Cilt. 140, s. 509-515. Conference
  • Panigrahi, C.K., Chattopadhyay, P.K., Chakrabarti, R.N., Basu, M. 2006. Simulated Annealing Technique for dynamic economic dispatch, Electric Power Components and Systems, Cilt. 34, s.577-586.
  • Panigrahi, C.K., Pandi, V.R., Das, S. 2008. Adaptive particle swarm optimization approach for static and dynamic economic load dispatch, Energy Conversion and Management, Cilt. 49, s.1407-1415.
  • Park, J.B. 2005. A particle swarm optimization for economic dispatch with non-smooth cost functions, IEEE Transactions on Power Systems, Cilt. 20, s.34-42.
  • Mahidhar, V., Reddy, G.S. 2007. Economic load dispatch with valve point effects and ramp rates using new approach in PSO, International Journal of Engineering Research & Technology (IJERT),Cilt. 1, s.357-360.
  • Hemamalini, S., Simon, S.P. 2010. Artificial bee colony algorithm for economic load dispatch problem with non-smooth cost functions, Electric Power Components and Systems, Cilt. 38, s.786-803.
  • Coelho, L.S., Mariani, V.C. 2009. An improved algorithm for power economic load dispatch, Energy Conversion and Management, Cilt. 50, s.2522-2526.
  • Chakraborty, P., Roy, G.G., Panigrahi, B.K., Bansal, B.C., Mohapatra, A. 2012. Dynamic economic dispatch using harmony search algorithm with modified differential mutation operator, Electrical Engineering, Cilt. 94, s.197-205.
  • Civicioglu, P. 2013. Artificial cooperative searh algorithm for numerical optimization problems, Information Sciences, Cilt. 229, s.58- 76.
  • Fraga, E.S., Yang, L., Papageorgiou, L.G. 2012. On the modelling of valve point loadings for power electricity dispatch, Applied Energy, Cilt. 91,s. 301-303.
  • Civicioglu, P., Besdok, E. 2013. A conceptual comparison of the Cuckoo-search, optimization, differential evolution and artificial bee colony algorithms, Artificial Intelligence Review, Cilt. 39, No. 4, s.315-346. swarm
  • Yu, J.J.Q., Li, V.O.K. 2013. A Social
  • Spider Algorithm for Solving the Non-convex
  • Load Dispatch Problem, arXiv e
  • Print archive. Economic
  • Amjady, N., Sharifzadeh, H. 2010. Solution of non-convex economic dispatch problem considering valve point effect by a new Modified Differential Evolution algorithm, Electrical Power and Energy Systems, Cilt. 32, s.839-903.
  • Reddy, S.A., Vaisakh, K. 2013. Shuffled differential evolution for large scale economic dispatch, Electric Power Systems Research, Cilt. 96, s. 237-245.
  • Mohammadi-Ivatloaa, B., Rabiee, A., Soroud, A., Ehsana, M. 2012. Iteration PSO with time varying acceleration coefficients for solving non-convex problems, Electrical Power and Energy Systems, Cilt. 42, s. 508-516.
  • Xiong, G., Shi, D., Duan, X. 2013. Multi-strategy biogeography-based for economic dispatch problems, Applied Energy, Cilt. 111.,s. 801-811.
  • Al-Sumait, J.S., Al-Othman, A.K., Sykulski, J.K. 2002. Application of pattern search method to power system valve-point economic load dispatch, Electrical Power and Energy Systems, Cilt. 62, No. 3, s. 201-207.
  • Bhattacharya, A., Chattopadhyay, P.K. 2010. Hybrid differential evolution with biogeography-based optimization economic load dispatch, IEEE Transactions on Power Systems, Cilt. 25, No. 4, s. 1955-1964. of
There are 27 citations in total.

Details

Other ID JA39DD77NT
Journal Section Research Article
Authors

Mert Sinan Turgut This is me

Güleser Kalaycı Demir This is me

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 55

Cite

APA Turgut, M. S., & Kalaycı Demir, G. (2017). Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması ile Çözümü. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(55), 16-27.
AMA Turgut MS, Kalaycı Demir G. Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması ile Çözümü. DEUFMD. January 2017;19(55):16-27.
Chicago Turgut, Mert Sinan, and Güleser Kalaycı Demir. “Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması Ile Çözümü”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 55 (January 2017): 16-27.
EndNote Turgut MS, Kalaycı Demir G (January 1, 2017) Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması ile Çözümü. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 55 16–27.
IEEE M. S. Turgut and G. Kalaycı Demir, “Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması ile Çözümü”, DEUFMD, vol. 19, no. 55, pp. 16–27, 2017.
ISNAD Turgut, Mert Sinan - Kalaycı Demir, Güleser. “Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması Ile Çözümü”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/55 (January 2017), 16-27.
JAMA Turgut MS, Kalaycı Demir G. Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması ile Çözümü. DEUFMD. 2017;19:16–27.
MLA Turgut, Mert Sinan and Güleser Kalaycı Demir. “Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması Ile Çözümü”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 55, 2017, pp. 16-27.
Vancouver Turgut MS, Kalaycı Demir G. Ekonomik Yük Dağıtımı Probleminin Yapay İşbirlikçi Algoritması ile Çözümü. DEUFMD. 2017;19(55):16-27.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.