BibTex RIS Cite

Gemi İnşaatında Simülasyon Ortamı Kullanarak Tekil Profil İmalatının İncelenmesi

Year 2017, Volume: 19 Issue: 55, 79 - 91, 01.01.2017

Abstract

Profile preparing process is an important work unit at a shipyard. At this station, the specific dimensioned profiles are obtained. In the case of any delay in this work unit, the delivery date may be postponed. In order to preclude these problems, the profile work unit performance has to be satisfactory. In this study, a profile processing work unit of a Turkish Shipyard was considered and the performance analysis was performed by using a simulation software. At the first stage of the study, process analysis of the profile processing work unit was carried out and then the simulation model was created. After that, some scenarios were implemented. It was concluded from these scenarios that the improvements on the operation time of marking-cutting activities increase the production quantity of profile. On the other hand, the improvements on edge sweeping and grinding activities have a very little affect on throughput of profile cutting work unit

References

  • Xu, J., Huang, E., Chen, C.H., Lee, L.H. Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing and Big Data, Asia-Pacific Journal of Operational Research, Vol. 32, No. , p. 1-34. Kelton, D., Smith, J.S., Sturrock, D.T. Simio Modeling, Analysis, Applications, Sewickley November 30, p.3. Simulation: PA, E-book Ed., Song, Y.J., Lee, D.K., Woo, J.H., Shin, J.G. 2010. System Development and Applications of a Shipyard Layout
  • Design Framework, Journal of Ship Production and Design, Vol. 26, No. , , p. 144-154. McLean, C., Shao, G. 2001. Simulation
  • Operations, Proceedings of the Conference, Arlington, USA, p. 870- Simulation Shin, J.G., Lee, K.K., Woo, J.H., Kim, W.D., Lee, J.H., Kim, S.H., Park, J.Y., Yim, H. A. 2004. Modeling and Simulation of Production Process in Subassembly Lines at a Shipyard,
  • Production, Vol. 20, No. 2, p. 79-83. of Ship Kim, H., Lee, S.S., Park, J.H., Lee, J.G. A Model for a Simulation-Based Shipbuilding System in a Shipyard Manufacturing International Journal of Computer Integrated Manufacturing, Vol. 18, No. 6, p. 427-441. Process, Lee, K., Shin, J.G., Ryu, C. 2009.
  • Development of Simulation-Based Production Execution System in a Shipyard: A Case Study for a Panel Block Assembly Shop, Production Planning & Control, Vol. 20, No. 8, p. 768. Shin, J.G., Song, Y.J., Lee, D.K., Woo, A J.H. Framework for a Shipyard Layout Design Based on Simulation, Journal of Ship Production, Vol. 25, No. 3, p. 126-135. and Yasuhisa, O., Kentaro, H. 2005.
  • Digital Manufacturing of Pipe Unit Assembly, Production, Vol. 21, No. 3, p. 141- of Ship Cheng, T.M., Feng, C.W. 2003. An
  • Effective Simulation Mechanism for Construction Automation in Construction, Vol. 12, p. 227-244. Operations, Shin, J.G., Sohn, Simulation-Based Evaluation of Productivity For the Design of an Automated Fabrication Workshop in Shipbuilding, Journal of Ship Production, Vol. 16, No. 1, p. 46-59. Cha, J.H., Roh, M.I. 2010. Combined
  • Discrete Event and Discrete Time Simulation Framework and Its Application to the Block Erection Process in Shipbuilding, Advances in Engineering Software, Vol. 41, p. 665. Woo, J.H., Song, Y.J., Kang, Y.W., Shin JG. 2010. Development of the Decision-Making System for the Ship Block Logistics Based on the Simulation,
  • Production and Design, Vol. 26, No. , p. 290-300. of Ship Song, Y.J., Woo, J.H., Shin, J.G. 2009.
  • Research on a Simulation-Based Ship Production Support System for Middled-Sized Shipbuilding Companies, International Journal of Naval Architecture and Ocean Engineering, Vol. 1, No. 2, p. 70-77. Lee, D.K., Shin, J.G., Kim, Y., Jeong, Y.K. 2014. Simulation-Based Work
  • Plan Verification in Shipyards, Journal of Ship Production and Design, Vol. 30, No. 2, p. 49-57. Kolich, D., Storch, R.L., Fafandjel, N. Lean Manufacturing in Shipbuilding With Monte Carlo Simulation, Conference Applications in Shipbuilding, Vol. ,Trieste, p. 159-167. Computer

Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment

Year 2017, Volume: 19 Issue: 55, 79 - 91, 01.01.2017

Abstract

Profil hazırlama, tersanedeki en önemli işlemlerden biridir. Profil işleme ünitesinde belirli boyutlara sahip profiller hazırlanmaktadır. Bu ünitede gecikme olduğunda, geminin teslim tarihi de gecikebilmektedir. Bu tip problemleri önlemek için profil işleme ünitesinin performansının yeterli olması gerekmektedir. Bu çalışmada bir tersanenin profil kesim ünitesi ele alınmış ve bu ünitenin performans analizi yapılmıştır. Çalışmanın ilk kısmında, profil işleme ünitesinin süreç analizi yapılmış ve simülasyon modeli oluşturulmuştur. Sonrasında, birtakım senaryolar uygulanarak çeşitli sonuçlar elde edilmiş ve değerlendirilmiştir. Bu senaryolar değerlendirildiğinde, markalama-kesim aktiviteleri üzerinde yapılabilecek olan iyileştirmelerin profil üretim miktarını artırdığı, diğer taraftan kenar temizleme ve taşlama işlemleri üzerinde yapılacak olan iyileştirmelerin profil kesim iş ünitesinin çıktı miktarını çok az etkilediği görülmüştür

References

  • Xu, J., Huang, E., Chen, C.H., Lee, L.H. Simulation Optimization: A Review and Exploration in the New Era of Cloud Computing and Big Data, Asia-Pacific Journal of Operational Research, Vol. 32, No. , p. 1-34. Kelton, D., Smith, J.S., Sturrock, D.T. Simio Modeling, Analysis, Applications, Sewickley November 30, p.3. Simulation: PA, E-book Ed., Song, Y.J., Lee, D.K., Woo, J.H., Shin, J.G. 2010. System Development and Applications of a Shipyard Layout
  • Design Framework, Journal of Ship Production and Design, Vol. 26, No. , , p. 144-154. McLean, C., Shao, G. 2001. Simulation
  • Operations, Proceedings of the Conference, Arlington, USA, p. 870- Simulation Shin, J.G., Lee, K.K., Woo, J.H., Kim, W.D., Lee, J.H., Kim, S.H., Park, J.Y., Yim, H. A. 2004. Modeling and Simulation of Production Process in Subassembly Lines at a Shipyard,
  • Production, Vol. 20, No. 2, p. 79-83. of Ship Kim, H., Lee, S.S., Park, J.H., Lee, J.G. A Model for a Simulation-Based Shipbuilding System in a Shipyard Manufacturing International Journal of Computer Integrated Manufacturing, Vol. 18, No. 6, p. 427-441. Process, Lee, K., Shin, J.G., Ryu, C. 2009.
  • Development of Simulation-Based Production Execution System in a Shipyard: A Case Study for a Panel Block Assembly Shop, Production Planning & Control, Vol. 20, No. 8, p. 768. Shin, J.G., Song, Y.J., Lee, D.K., Woo, A J.H. Framework for a Shipyard Layout Design Based on Simulation, Journal of Ship Production, Vol. 25, No. 3, p. 126-135. and Yasuhisa, O., Kentaro, H. 2005.
  • Digital Manufacturing of Pipe Unit Assembly, Production, Vol. 21, No. 3, p. 141- of Ship Cheng, T.M., Feng, C.W. 2003. An
  • Effective Simulation Mechanism for Construction Automation in Construction, Vol. 12, p. 227-244. Operations, Shin, J.G., Sohn, Simulation-Based Evaluation of Productivity For the Design of an Automated Fabrication Workshop in Shipbuilding, Journal of Ship Production, Vol. 16, No. 1, p. 46-59. Cha, J.H., Roh, M.I. 2010. Combined
  • Discrete Event and Discrete Time Simulation Framework and Its Application to the Block Erection Process in Shipbuilding, Advances in Engineering Software, Vol. 41, p. 665. Woo, J.H., Song, Y.J., Kang, Y.W., Shin JG. 2010. Development of the Decision-Making System for the Ship Block Logistics Based on the Simulation,
  • Production and Design, Vol. 26, No. , p. 290-300. of Ship Song, Y.J., Woo, J.H., Shin, J.G. 2009.
  • Research on a Simulation-Based Ship Production Support System for Middled-Sized Shipbuilding Companies, International Journal of Naval Architecture and Ocean Engineering, Vol. 1, No. 2, p. 70-77. Lee, D.K., Shin, J.G., Kim, Y., Jeong, Y.K. 2014. Simulation-Based Work
  • Plan Verification in Shipyards, Journal of Ship Production and Design, Vol. 30, No. 2, p. 49-57. Kolich, D., Storch, R.L., Fafandjel, N. Lean Manufacturing in Shipbuilding With Monte Carlo Simulation, Conference Applications in Shipbuilding, Vol. ,Trieste, p. 159-167. Computer
There are 11 citations in total.

Details

Other ID JA64ZF97TN
Journal Section Research Article
Authors

Murat Özkök This is me

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 55

Cite

APA Özkök, M. (2017). Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(55), 79-91.
AMA Özkök M. Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment. DEUFMD. January 2017;19(55):79-91.
Chicago Özkök, Murat. “Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 55 (January 2017): 79-91.
EndNote Özkök M (January 1, 2017) Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 55 79–91.
IEEE M. Özkök, “Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment”, DEUFMD, vol. 19, no. 55, pp. 79–91, 2017.
ISNAD Özkök, Murat. “Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/55 (January 2017), 79-91.
JAMA Özkök M. Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment. DEUFMD. 2017;19:79–91.
MLA Özkök, Murat. “Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 55, 2017, pp. 79-91.
Vancouver Özkök M. Investigation of Single Section Part Fabrication in Shipbuilding by Utilizing Simulation Environment. DEUFMD. 2017;19(55):79-91.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.