BibTex RIS Cite

The Failure Probability of The Coupling Beams with Monte Carlo Simulation

Year 2017, Volume: 19 Issue: 55, 92 - 99, 01.01.2017

Abstract

Since lateral loads cause bending with high shear stresses in coupling beams, the structural behavior of a coupled shear walls is greatly affected by the behavior of the coupling beams which depends on its geometrical, mechanical properties and also coupling ratio (r). The value of r considered to be one of the major issues in nonlinear analysis in coupled shear walls represents the proportion of overturning moment resisted by the coupling action. In order to evaluate the r-values by using magnified beam algorithm, an adequate number of coupled shear walls having several geometries commonly used in construction were considered and then failure probabilities of coupling beams were calculated using Monte Carlo simulation

References

  • Pala S, Özmen G. Effective Stiffness of Coupling Beams in Structural Walls, Computer and Structures 54(5): 1995, pp.925-931.
  • Chaallal O, Gauthier D. Malenfant P. Classification Methodology For Coupled Shear Walls, Journal of Structural 122(12): 1996, pp.1453-1458.
  • Tezcan SS, Kaya ZD. The Effective Rigidity of a Coupled Shear Wall. Bogazici University, Department of Civil Engineering, Vedat Yerlici- Engineering and Education, A Volume Honoring Prof.Dr. Vedat Yerlici, Istanbul, 1997, pp.361-370.
  • Harries KA, Gong B, Shahrooz BM. Behavior and Design of Reinforced Concrete, Steel, and Steel-concrete Coupling Spectra 16(4): 2000, pp.775-799.
  • El-Tawil S, Kuenzli CM. Pushover of Hybird Coupled Walls. I: Analysis and Behavior, Journal of Structural Engineering, ASCE 128(10): 2002, pp.1282-1289.
  • El-Tawil S, Kuenzli CM, Hassan M. Pushover of Hybird Coupled Walls. I: Design and Modeling, Journal of Structural 128(10): 2002, pp.1272-1281.
  • Hassan M, El-Tawil S. Inelastic Dynamic Behavior of Hybird Coupled Walls, Journal of Structural Engineering, ASCE 130(2): 2004, pp.285-296.
  • Kent A, Harries et al. Parametric Study of Coupled Wall Behavior- Implications for the Design of Coupling Structural 2004, pp.480-488. Journal of 130(3):
  • Xilin-L, Yuantao C. Modeling of Coupled Shear Walls and Its Experimental Verification, Journal of Structural Engineering 131(1): 2005, pp.75-84.
  • Wan-Shin P, Hyun-Do Y, Jae-Yong C, Yong-Chul K. Experimental studies on seismic behavior of steel coupling Engineering and Mechanics, Techno Press Journal 20(6), 2006.
  • Doran B. Elastic-Plastic Analysis Of R/C Coupled Shear Walls : The Equivalent Stiffness Ratio Of The Tie Elements, Indian Institute of Science 83: 2004, Pp.87-94.
  • Doran B. A Magnified Beam Algorithm To Determine The Coupling Ratios of R/C Coupled Shear Walls. Struct. Design Tall Spec. Build. 18 (8): 2009, Pp.921-929.
  • Wadsworth HM. Handbook of Statistical Methods for Engineers and Scientists. McGrawHill Inc, NewYork, 1997.
  • Saatcioglu M, Derecho AT, Corley WG. Parametric Study of Eartquake- Resistant Coupled Walls. ASCE Journal of the Structural Division 113(1): 1987, pp.141-157.
  • Guizani L, Chaallal O. Demande en Ductilité des murs de Refend Couplés. Proceeding of the Seventh Canadian Conference on Earthquake Engineering, pp.461-468. 1995,
  • Harries KA, Mitchell D, Redwood RG, Cook WD. Seismic Design and Analysis of Prototype Coupled Wall Structures. Canadian Journal of Civil Engineering 25(5): 1998, pp.808- 818.
  • Pekau OA, Cistera V. Behaviour of Nonlinear Coupled Shear Walls with Flexible Bases. Canadian Journal of Civil Engineering 16(1): 1989, pp.45-54.
  • Fintel M, Ghosh SK. Seismic Resistance of a 31 Storey Wall- Frame Building Using Dynamic Inelastic Response History Analysis. Proceeding of the Seventh World Conference Engineering, Istanbul, 1980, pp.379- 386. Earthquake
  • Fintel M, Ghosh SK. Case Study of Aseismic Design of a 16-story Coupled Wall Using Inelastic Dynamic analysis, ACI Journal 79(3): 1982, pp.171-179.
  • Ang A, Tang WH. Probability Concepts in Engineering Planning and Design, V.II, Decision, Risk, and Reliability, Wiley, New York, 1984.
  • Jorge EH. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory, Structural Safety 26: 2004, pp.271-293.
  • Yong L, Xiaoming Gu. Probability analysis deformation limits for different performance levels and reliability of their deterministic calculations, Structural Safety 26: 2004, pp.367- 389. Members
  • Christopher DE, Michel T, Zhenyu L. of Evaluation efficiency of some simulation and sampling methods in structural reliability analysis, Structural Safety 27: 2005, pp.356-392. and [24] Lars T.
  • Proban-probabilistic
  • analysis, Structural Safety 28: 2006, pp.150-163. [25] ACI 318, Building for Requirements Concrete, Structural Concrete American Institute, Farmington Hills, MI, 2011.
  • Nowak AS, Collins KR. Reliability of Structures, (1st Edition), McGraww- Hill, Singaporei 2012.
  • Öztekin E. Reliabilities of distances describing bolt placement for high strength Structural Mechanics, 54(1), 149-168., Doi: 10.12989 2015. connections, Engineering And /sem.2015.54.1.149,
  • Öztekin E. Cıvatalı Çelik Yapı Birlesimlerinde Cıvata Yerlesim Mesafelerinin MCS Metodu İle Arastırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21(6), 213-223., Doi: 2015.

Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu ile Belirlenmesi

Year 2017, Volume: 19 Issue: 55, 92 - 99, 01.01.2017

Abstract

Yatay yükler bağ kirişlerinde eğilme ve beraberinde önemli oranda kesme gerilmelerine neden olduğu için, boşluklu perdeli sistemlerin yapısal davranışları bağ kirişlerinin geometrik, mekanik özellikleri ve bağ kirişi katkı oranı (r) ile yakından alakalı olan davranışlarından oldukça fazla etkilenmektedir. Bu nedenle, r-değerleri boşluklu perdeli sistemlerin doğrusal olmayan hesabında önemli bir parametre olarak düşünülebilir. Bu çalışmada “r” değerlerini belirlemek amacıyla uygulamada sıkça karşılaşılan geometriye sahip yeterli sayıda boşluklu perdeli sistemler dikkate alınarak bağ kirişi katkı oranları genişletilmiş çubuk teorisi yardımı ile ifade edilmiş ve Monte Carlo simülasyonu ile sözkonusu bağ kirişlerin göçme olasılıkları hesaplanmıştır

References

  • Pala S, Özmen G. Effective Stiffness of Coupling Beams in Structural Walls, Computer and Structures 54(5): 1995, pp.925-931.
  • Chaallal O, Gauthier D. Malenfant P. Classification Methodology For Coupled Shear Walls, Journal of Structural 122(12): 1996, pp.1453-1458.
  • Tezcan SS, Kaya ZD. The Effective Rigidity of a Coupled Shear Wall. Bogazici University, Department of Civil Engineering, Vedat Yerlici- Engineering and Education, A Volume Honoring Prof.Dr. Vedat Yerlici, Istanbul, 1997, pp.361-370.
  • Harries KA, Gong B, Shahrooz BM. Behavior and Design of Reinforced Concrete, Steel, and Steel-concrete Coupling Spectra 16(4): 2000, pp.775-799.
  • El-Tawil S, Kuenzli CM. Pushover of Hybird Coupled Walls. I: Analysis and Behavior, Journal of Structural Engineering, ASCE 128(10): 2002, pp.1282-1289.
  • El-Tawil S, Kuenzli CM, Hassan M. Pushover of Hybird Coupled Walls. I: Design and Modeling, Journal of Structural 128(10): 2002, pp.1272-1281.
  • Hassan M, El-Tawil S. Inelastic Dynamic Behavior of Hybird Coupled Walls, Journal of Structural Engineering, ASCE 130(2): 2004, pp.285-296.
  • Kent A, Harries et al. Parametric Study of Coupled Wall Behavior- Implications for the Design of Coupling Structural 2004, pp.480-488. Journal of 130(3):
  • Xilin-L, Yuantao C. Modeling of Coupled Shear Walls and Its Experimental Verification, Journal of Structural Engineering 131(1): 2005, pp.75-84.
  • Wan-Shin P, Hyun-Do Y, Jae-Yong C, Yong-Chul K. Experimental studies on seismic behavior of steel coupling Engineering and Mechanics, Techno Press Journal 20(6), 2006.
  • Doran B. Elastic-Plastic Analysis Of R/C Coupled Shear Walls : The Equivalent Stiffness Ratio Of The Tie Elements, Indian Institute of Science 83: 2004, Pp.87-94.
  • Doran B. A Magnified Beam Algorithm To Determine The Coupling Ratios of R/C Coupled Shear Walls. Struct. Design Tall Spec. Build. 18 (8): 2009, Pp.921-929.
  • Wadsworth HM. Handbook of Statistical Methods for Engineers and Scientists. McGrawHill Inc, NewYork, 1997.
  • Saatcioglu M, Derecho AT, Corley WG. Parametric Study of Eartquake- Resistant Coupled Walls. ASCE Journal of the Structural Division 113(1): 1987, pp.141-157.
  • Guizani L, Chaallal O. Demande en Ductilité des murs de Refend Couplés. Proceeding of the Seventh Canadian Conference on Earthquake Engineering, pp.461-468. 1995,
  • Harries KA, Mitchell D, Redwood RG, Cook WD. Seismic Design and Analysis of Prototype Coupled Wall Structures. Canadian Journal of Civil Engineering 25(5): 1998, pp.808- 818.
  • Pekau OA, Cistera V. Behaviour of Nonlinear Coupled Shear Walls with Flexible Bases. Canadian Journal of Civil Engineering 16(1): 1989, pp.45-54.
  • Fintel M, Ghosh SK. Seismic Resistance of a 31 Storey Wall- Frame Building Using Dynamic Inelastic Response History Analysis. Proceeding of the Seventh World Conference Engineering, Istanbul, 1980, pp.379- 386. Earthquake
  • Fintel M, Ghosh SK. Case Study of Aseismic Design of a 16-story Coupled Wall Using Inelastic Dynamic analysis, ACI Journal 79(3): 1982, pp.171-179.
  • Ang A, Tang WH. Probability Concepts in Engineering Planning and Design, V.II, Decision, Risk, and Reliability, Wiley, New York, 1984.
  • Jorge EH. An examination of methods for approximating implicit limit state functions from the viewpoint of statistical learning theory, Structural Safety 26: 2004, pp.271-293.
  • Yong L, Xiaoming Gu. Probability analysis deformation limits for different performance levels and reliability of their deterministic calculations, Structural Safety 26: 2004, pp.367- 389. Members
  • Christopher DE, Michel T, Zhenyu L. of Evaluation efficiency of some simulation and sampling methods in structural reliability analysis, Structural Safety 27: 2005, pp.356-392. and [24] Lars T.
  • Proban-probabilistic
  • analysis, Structural Safety 28: 2006, pp.150-163. [25] ACI 318, Building for Requirements Concrete, Structural Concrete American Institute, Farmington Hills, MI, 2011.
  • Nowak AS, Collins KR. Reliability of Structures, (1st Edition), McGraww- Hill, Singaporei 2012.
  • Öztekin E. Reliabilities of distances describing bolt placement for high strength Structural Mechanics, 54(1), 149-168., Doi: 10.12989 2015. connections, Engineering And /sem.2015.54.1.149,
  • Öztekin E. Cıvatalı Çelik Yapı Birlesimlerinde Cıvata Yerlesim Mesafelerinin MCS Metodu İle Arastırılması. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 21(6), 213-223., Doi: 2015.
There are 28 citations in total.

Details

Other ID JA45JF85EC
Journal Section Research Article
Authors

Bilge Doran This is me

Sema Alacalı This is me

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 55

Cite

APA Doran, B., & Alacalı, S. (2017). Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu ile Belirlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(55), 92-99.
AMA Doran B, Alacalı S. Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu ile Belirlenmesi. DEUFMD. January 2017;19(55):92-99.
Chicago Doran, Bilge, and Sema Alacalı. “Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu Ile Belirlenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 55 (January 2017): 92-99.
EndNote Doran B, Alacalı S (January 1, 2017) Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu ile Belirlenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 55 92–99.
IEEE B. Doran and S. Alacalı, “Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu ile Belirlenmesi”, DEUFMD, vol. 19, no. 55, pp. 92–99, 2017.
ISNAD Doran, Bilge - Alacalı, Sema. “Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu Ile Belirlenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/55 (January 2017), 92-99.
JAMA Doran B, Alacalı S. Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu ile Belirlenmesi. DEUFMD. 2017;19:92–99.
MLA Doran, Bilge and Sema Alacalı. “Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu Ile Belirlenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 55, 2017, pp. 92-99.
Vancouver Doran B, Alacalı S. Bağ Kirişlerinin Göçme Olasılıklarının Monte Carlo Simülasyonu ile Belirlenmesi. DEUFMD. 2017;19(55):92-9.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.