BibTex RIS Cite

Investigation on Earthquake Safety of Buildings Constructed for the Urban Transformation of Istanbul

Year 2017, Volume: 19 Issue: 55, 100 - 121, 01.01.2017

Abstract

The purpose of this study is to investigate the seismic performance of a specific type structural system that is utilized for almost all of the new residential buildings currently constructed as part of the Istanbul Urban Transformation Project. The structural system under consideration is comprised of lateral and gravity system elements, namely columns and shear walls, that are connected by ribbed slabs and shallow flat beams placed within the slabs. Firstly, a representative building of the new stock of buildings is selected, and the structural members are proportioned and detailed according to the current Turkish structural and seismic codes. Then, the seismic performance of the building is investigated. The results handled in this study reveal that these type of buildings cannot satisfy the earthquake safety requirements defined in actual Turkish Seismic Code

References

  • Erdik, M., Aydinoglu, N., Fahjan, Y., Sesetyan, K., Demircioglu, M., Siyahi, B., Durukal, E., Ozbey, C., Biro, Y., Akman, H., Yuzugullu, O. 2003. Earthquake Risk Assessment for Istanbul Earthquake
  • Engineering Vibration, Cilt. 2, No. 1, s. 1-23.
  • Area, and Engineering
  • B, Özmen. 2000. 17 Ağustos 1999 İzmit Körfezi Depreminin Hasar Durumu
  • Türkiye Deprem Vakfı, Ankara, 132s.
  • Verilerle). [3] B, Özmen. 2000. 12 Kasım 1999 Düzce Depreminin Konut ve İşyeri Hasarları
  • Bayındırlık ve İskân Bakanlığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi, Ankara, s. 155- 214.
  • Verilerle). [4] Özcebe, G., Yücemen, M.S., Aydogan, V., Yakut, A. 2003. ‘Preliminary seismic vulnerability assessment of existing RC buildings in Turkey–Part I’
  • Rehabilitation of Existing Buildings, NATO Science Series, Cilt. 4, No. 29, s. 29-42.
  • and [5] Yakut, A., Aydogan, V., Özcebe, G., Yücemen, M.S. 2003. ‘Preliminary seismic vulnerability assessment of existing RC buildings in Turkey–Part II’
  • Rehabilitation of Existing Buildings, NATO Science Series, Cilt. 4, No. 29, s. 43-58.
  • and [6] Ozcebe, G., Sucuoglu, H., Yucemen, M.S., Yakut, A., Kubin, J. 2006. Seismic Risk Assessment of Existing Building Stock in Istanbul a Pilot Application in Zeytinburnu District, 8th US National Conference on Earthquake Francisco, p.1737.
  • San [7] Ansal, A., Akinci, A., Cultrera, G., Erdik, M., Pessina, V., Tönük, G., Ameri, G. 2009. Loss Estimation in Istanbul Based On Deterministic Earthquake
  • Marmara Sea Region (Turkey), Soil Dynamics
  • Engineering, Cilt. 29, No. 4, s. 699- 709. of the and
  • Earthquake [8] Yakut, A., Sucuoğlu, H., Akkar, S. 2012. Seismic Risk Prioritization of Residential Buildings in Istanbul, Earthquake
  • Structural Dynamics, Cilt. 41, No. 11, s. 1533-1547.
  • and [9] Japan International Co–operation Agency and Istanbul Metropolitan Municipality. 2002. ‘The Study on a Disaster
  • Basic Plan in Istanbul Including Seismic Microzonation in the Republic of Turkey’ Final Report, Tokyo-İstanbul. [10] Metropolitan Municipality
  • of Istanbul Planning and Construction Directoriat Earthquake
  • and Investigation 2003.
  • Earthquake Fragility Analysis of Flat-Slab Structures, Engineering Structures, Cilt. 26, No. 7, s. 937-948.
  • Robertson, I.N., Kawai, T., Lee, J., Enomoto, B. 2002. Cyclic Testing of Slab-Column
  • Shear Reinforcement, ACI Structural Journal, Cilt. 99, No. 5, s. 605-613.
  • Brown, S., Dilger, W. 2004. Design of Slab-Column Connections to Resist Seismic Loading, 13th World Conference
  • Engineering, Vancouver, p.2832.
  • Coelho, E., Candeias, P., Anamateros, G., Zaharia, R., Taucer, F., Pinto, A.V. 2004. Assessment of the Seismic Behaviour of RC Flat Slab Building Structures, 13th World Conference on
  • Vancouver, 2004, p.2630.
  • Engineering, [15] Zekioglu, A., Willford, M., Jin, L., Melek, M. 2007. Case Study Using the Los Angeles Tall Buildings Structural
  • Guidelines: 40-Storey Concrete Core Wall Building, The Structural Design of Tall and Special Buildings, Cilt. 16, No. 5, s. 583-597.
  • Council [16] Klemencic, R., Fry, J.A., Hooper, J.D., Morgen, B.G. 2007. Performance- Based Design of Ductile Concrete Core Wall Buildings—Issues to Consider Before Detailed Analysis, The Structural Design of Tall and Special Buildings, Cilt. 16, No. 5, s. 599-614.
  • Rha, C., Kang, T.H.K., Shin, M., Yoon, J.B. 2014. Gravity and Lateral Load- Carrying Capacities of Reinforced Concrete Flat Plate Systems, ACI Structural Journal, Cilt. 111, No. 4, s. 753-764.
  • Gogus, A., Wallace, J.W. 2015. Fragility Assessment of Slab-Column Connections, Earthquake Spectra, Cilt. 31, No. 1, s. 159-177.
  • Lee, H.S., Hwang, K.R., Kim, Y.H. 2015. Seismic Performance of a 1:15-Scale 25-Story RC Flat-Plate Corewall Earthquake
  • Structural Dynamics, Cilt. 44, No. 6, s. 929-953.
  • Model, and [20] Sen, S., Singh, Y. 2015. "Seismic Performance of Flat Slab Buildings", in
  • Engineering, (Ed.) V. Matsagar, India: Springer India, s. 897-907.
  • Surumi, R.S., Jaya, K.P., Greeshma, S. 2015. Modelling and Assessment of Shear Wall–Flat Slab Joint Region in Tall Structures, Arabian Journal for Science and Engineering, Cilt. 40, No. 8, s. 2201-2217.
  • Siah, W.L., Stehle, J.S., Mendis, P., Goldsworthy, H. 2003. Interior Wide Beam Connections Subjected to Lateral
  • Engineering Structures, Cilt. 25, No. 3, s. 281-291.
  • Loading, [23] Benavent-Climent, A. 2005. Shaking Table Tests of Reinforced Concrete Wide Beam–Column Connections, [24] Benavent-Climent, A. 2007. Seismic Behavior of RC Wide Beam-Column Connections
  • Loading, Journal of Earthquake Engineering, Cilt. 11, No. 4, s. 493- 511.
  • Dynamic [25] Benavent-Climent, A., Cahis, X., Zahran, R. 2009. Exterior Wide Beam Column Connections in Existing RC Frames Subjected to Lateral
  • Engineering Structures, Cilt. 31, No. 7, s. 1414-1424.
  • Loads, [26] Benavent-Climent, A., Cahis, X., Vico, J.M. 2010. Interior Wide Beam- Column Connections in Existing RC Frames
  • Earthquake Loading, Bulletin of Earthquake Engineering, Cilt. 8, No. 2, s. 401-420. to
  • Lateral [27] Li, B., Kulkarni, S.A. 2010. Seismic Behavior of Reinforced Concrete Exterior Wide Beam-Column Joints, Journal of Structural Engineering, Cilt. 136, No. 1, s. 26-36.
  • Luk, S.H., Kuang, J.S. 2012. Seismic Behaviour of RC Exterior Wide Beam-Column Joints, 15th World Conference
  • Engineering, Cilt XIV, Lisbon, s. 10987-10996.
  • Earthquake [29] Bayındırlık ve İskân Bakanlığı. 2007. Deprem Bölgelerinde Yapılacak Binalar
  • (DBYBHY-2007), Ankara.
  • Yönetmelik [30] Türk Standartları Enstitüsü. 2000. Betonarme Yapıların Tasarım ve Yapım Kuralları (TS-500), Ankara.
  • Sta Bilgisayar Mühendislik ve Müşavirlik Ltd. Şti., STA4-CAD v13.1, Betonarme ve Çelik Bina Tasarım Yazılımı, İstanbul.
  • Computers and Structures Inc., SAP2000 Analysis California.
  • Structural Berkeley, [33] Imbsen Software Systems, XTRACT v3.0.8, Cross Section Analysis Program for Structural Engineers, California.
  • Akyıldız, A.T. 2015. Mevcut Bir Betonarme
  • Belirtilen Doğrusal Elastik Olmayan Analiz Performans
  • İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 211s, İstanbul.
  • TDY’07’de Yöntemlerine
  • Göre Değerlendirmesi. [35] Pacific Earthquake Engineering Research Center (PEER) Strong Motion
  • Database. http://ngawest2.berkeley.edu/,
  • (Erişim Tarihi: 03.05.2015).
  • Center for Engineering Strong Motion Data (CESMD), Strong- Motion
  • http://www.strongmotioncenter.or
  • g/cgi-bin/CESMD/archive.pl,
  • (Erişim Tarihi: 03.05.2015).
  • Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Deprem Dairesi Başkanlığı.
  • http://kyhdata.deprem.gov.tr/2K/k yhdata_v4.php, 05.05.2015).
  • Tarihi: [38] Seismosoft Ltd.,
  • v2.1.0, An Application for Adjusting Earthquake Accelerograms, Pavia. [39] Leng, K., Chintanapakdee,
  • C., Hayashikawa, T. 2014. Seismic Shear Forces in Shear Walls of a Medium-Rise Building Designed By Response
  • Engineering Journal, Cilt. 18, No. 4, s. 73-95.
  • Analysis, [40] Munir, A., Warnitchai, P. 2012. The Cause of Unproportionately Large Higher Mode Contributions in the Inelastic Seismic Responses of High- Rise Core-Wall
  • Buildings, [41] Pugh, J.S., Lowes, L.N., Lehman, D.E. 2014. Seismic Design of Slender Concrete Walls, Proceedings of the 10th US National Conference on Earthquake Engineering, Anchorage, Alaska, Earthquake Engineering Research Institute, s. 3267-3277.
  • American Concrete Institute. 2011. Building Code Requirements for Structural Concrete (ACI 318-11), Farmington Hills, MI.
  • American Society of Civil Engineers. 2007. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10), Reston, Virginia.
  • Rutenberg, A., Nsieri, E. 2006. The Seismic Shear Demand in Ductile Cantilever Wall Systems and the EC8
  • Earthquake Engineering, Cilt. 4, No. 1, s. 1-21. of [45] European Committee
  • for 2004. Standardization
  • Eurocode (EC) 8: ‘Design of Structures
  • Resistance – Part 1 General Rules, Seismic Actions and Rules for Buildings’ (EN 1998-1), Brussels.
  • New Zealand Standards Association. 1995. NZS 3101 Code of Practice for the Design of Concrete Structures (Parts 1 & 2), Wellington.
  • Kazaz, İ., Gülkan, P. 2013. Perde- Çerçeve Sistemlerde Kesme Kuvveti Dinamik Büyütme Katsayısı, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Hatay, p.128.
  • Salonikios, T.N., Kappos, A.J., Tegos, I.A., Penelis, G.G. 2000. Cyclic Load Behavior
  • Reinforced Concrete Walls: Failure Modes, Strength and Deformation Analysis, and Design Implications, ACI Structural Journal, Cilt. 97, No. 1, s. 132-142.
  • Sedgh, R.E., Dhakal, R.P., Carr, A.J. 2015. State of the Art: Challenges in Analytical Modelling of Multi-Storey Shear Wall Buildings, New Zealand Society for Earthquake Engineering Annual Conference (NZSEE2015), Rotorua, New Zealand, p.O-15.
  • Kazaz, İ., Gülkan, P., Yakut, A. 2012. Performance Limits for Structural Walls: An Analytical Perspective, Engineering Structures, Cilt. 43, No. 1, s. 105-119.
  • Constantin, R., Beyer, K. 2016. Behaviour of U-shaped RC Walls under Quasi-Static Cyclic Diagonal Loading, Engineering Structures, Cilt. 106, No. 1, s. 36-52.
  • Beyer, K., Dazio, A., Priestley, M.J.N. 2011. Shear Deformations of Slender Reinforced Concrete Walls under
  • Structural Journal, Cilt. 108, No. 2, s. 167-177.
  • ACI [53] Kalkan, E., Kunnath, S.K. 2007. Assessment of Current Nonlinear Static Procedures for Seismic Evaluation of Buildings, Engineering Structures, Cilt. 29, No. 3, s. 305-316. [54] Krawinkler, H., Seneviratna, G.D.P.K. 1998. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation, Engineering Structures, Cilt. 20, No. 4-6, s. 452-464.
  • Penelis, G.G., Kappos, A.J. 2002. 3D Pushover Analysis: The Issue of Torsion, 12th European Conference on Earthquake Engineering, London, p.015. [56] Aydınoğlu, M.N.
  • Incremental Response Spectrum Analysis Procedure Based on Inelastic Spectral Displacements for Multi-Mode Seismic Performance Evaluation, Bulletin of Earthquake Engineering, Cilt. 1, No. 1, s. 3-36.
  • Chopra, A.K., Goel, R.K. 2004. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Unsymmetric-Plan Earthquake
  • Structural Dynamics, Cilt. 33, No. 8, s. 903-927.
  • Buildings, Engineering
  • and [58] Fajfar, P., Marusic, D., Perus, I. 2005. Torsional Effects in the Pushover- Based Seismic Analysis of Buildings, Journal of Earthquake Engineering, Cilt. 9, No. 6, s. 831-854.
  • Baros, D.K., Anagnostopoulos, SA. 2008. An Overview of Pushover Procedures for the Analysis of Buildings Susceptible to Torsional Behavior, Conference
  • Engineering, Beijing, p.01-0195.
  • Earthquake Steel-Braced
  • Frame [62] Aka, İ. 2015. Kentsel Dönüşüm ve Asmolen Döşeme, İMO İstanbul Bülten, Sayı 132, s. 12-14.
  • Dönmez, C. 2013. Türkiye’deki Asmolen
  • Yeterliliği Konusunda Bir İrdeleme, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Hatay, p.013. [64] Apostolska, R.P.,
  • Cvetanovska, G.S., Cvetanovska, J.P., Mircic,
  • Performance of Flat-Slab Building Structural Systems, The 14th World Conference
  • Engineering, Beijing, p.01-0435.
  • Lelekakis, G.E., Birda, A.T., Mitoulis, S.A., Chrysanidis, T.A., Tegos, I.A. 2008. Applications of Flat Slab R/C Structures in Seismic Regions, Fifth European Workshop on the Seismic Behaviour of Irregular and Complex Structures, Catania, s. 99-113.
  • Değer, Z.T., Yang, T.Y., Wallace, J.W., Moehle,
  • Performance of Reinforced Concrete Core Wall Buildings With and Without Moment Resisting Frames, The Structural Design of Tall and Special Buildings, Cilt. 24, No. 7, s. 477-490. Seismic

İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması

Year 2017, Volume: 19 Issue: 55, 100 - 121, 01.01.2017

Abstract

Bu çalışmada, İstanbul’da başlayan ve sürmekte olan kentsel dönüşüm projesi kapsamında inşa edilen konut türü binaların hemen hemen tümünde kullanılan taşıyıcı sistem modelinin deprem performansının araştırılması amaçlanmıştır. Bahsedilen taşıyıcı sistem modelinde, kolon ve perdelerden oluşan düşey ve yatay yük taşıyıcı elemanlar, dişli döşemeler ve bu döşemeler içinde teşkil edilen yassı kirişler ile birbirine bağlanmaktadır. Bu tür binaları temsil edecek şekilde seçilmiş orta yükseklikte bir betonarme bina güncel yönetmeliklere göre boyutlandırılmıştır. Daha sonra bu binanın deprem performansı araştırılmıştır. Bu çalışmadan elde edilen sonuçlar bu tür binaların yeterli deprem güvenliğini sağlamadığı yönündedir

References

  • Erdik, M., Aydinoglu, N., Fahjan, Y., Sesetyan, K., Demircioglu, M., Siyahi, B., Durukal, E., Ozbey, C., Biro, Y., Akman, H., Yuzugullu, O. 2003. Earthquake Risk Assessment for Istanbul Earthquake
  • Engineering Vibration, Cilt. 2, No. 1, s. 1-23.
  • Area, and Engineering
  • B, Özmen. 2000. 17 Ağustos 1999 İzmit Körfezi Depreminin Hasar Durumu
  • Türkiye Deprem Vakfı, Ankara, 132s.
  • Verilerle). [3] B, Özmen. 2000. 12 Kasım 1999 Düzce Depreminin Konut ve İşyeri Hasarları
  • Bayındırlık ve İskân Bakanlığı Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi, Ankara, s. 155- 214.
  • Verilerle). [4] Özcebe, G., Yücemen, M.S., Aydogan, V., Yakut, A. 2003. ‘Preliminary seismic vulnerability assessment of existing RC buildings in Turkey–Part I’
  • Rehabilitation of Existing Buildings, NATO Science Series, Cilt. 4, No. 29, s. 29-42.
  • and [5] Yakut, A., Aydogan, V., Özcebe, G., Yücemen, M.S. 2003. ‘Preliminary seismic vulnerability assessment of existing RC buildings in Turkey–Part II’
  • Rehabilitation of Existing Buildings, NATO Science Series, Cilt. 4, No. 29, s. 43-58.
  • and [6] Ozcebe, G., Sucuoglu, H., Yucemen, M.S., Yakut, A., Kubin, J. 2006. Seismic Risk Assessment of Existing Building Stock in Istanbul a Pilot Application in Zeytinburnu District, 8th US National Conference on Earthquake Francisco, p.1737.
  • San [7] Ansal, A., Akinci, A., Cultrera, G., Erdik, M., Pessina, V., Tönük, G., Ameri, G. 2009. Loss Estimation in Istanbul Based On Deterministic Earthquake
  • Marmara Sea Region (Turkey), Soil Dynamics
  • Engineering, Cilt. 29, No. 4, s. 699- 709. of the and
  • Earthquake [8] Yakut, A., Sucuoğlu, H., Akkar, S. 2012. Seismic Risk Prioritization of Residential Buildings in Istanbul, Earthquake
  • Structural Dynamics, Cilt. 41, No. 11, s. 1533-1547.
  • and [9] Japan International Co–operation Agency and Istanbul Metropolitan Municipality. 2002. ‘The Study on a Disaster
  • Basic Plan in Istanbul Including Seismic Microzonation in the Republic of Turkey’ Final Report, Tokyo-İstanbul. [10] Metropolitan Municipality
  • of Istanbul Planning and Construction Directoriat Earthquake
  • and Investigation 2003.
  • Earthquake Fragility Analysis of Flat-Slab Structures, Engineering Structures, Cilt. 26, No. 7, s. 937-948.
  • Robertson, I.N., Kawai, T., Lee, J., Enomoto, B. 2002. Cyclic Testing of Slab-Column
  • Shear Reinforcement, ACI Structural Journal, Cilt. 99, No. 5, s. 605-613.
  • Brown, S., Dilger, W. 2004. Design of Slab-Column Connections to Resist Seismic Loading, 13th World Conference
  • Engineering, Vancouver, p.2832.
  • Coelho, E., Candeias, P., Anamateros, G., Zaharia, R., Taucer, F., Pinto, A.V. 2004. Assessment of the Seismic Behaviour of RC Flat Slab Building Structures, 13th World Conference on
  • Vancouver, 2004, p.2630.
  • Engineering, [15] Zekioglu, A., Willford, M., Jin, L., Melek, M. 2007. Case Study Using the Los Angeles Tall Buildings Structural
  • Guidelines: 40-Storey Concrete Core Wall Building, The Structural Design of Tall and Special Buildings, Cilt. 16, No. 5, s. 583-597.
  • Council [16] Klemencic, R., Fry, J.A., Hooper, J.D., Morgen, B.G. 2007. Performance- Based Design of Ductile Concrete Core Wall Buildings—Issues to Consider Before Detailed Analysis, The Structural Design of Tall and Special Buildings, Cilt. 16, No. 5, s. 599-614.
  • Rha, C., Kang, T.H.K., Shin, M., Yoon, J.B. 2014. Gravity and Lateral Load- Carrying Capacities of Reinforced Concrete Flat Plate Systems, ACI Structural Journal, Cilt. 111, No. 4, s. 753-764.
  • Gogus, A., Wallace, J.W. 2015. Fragility Assessment of Slab-Column Connections, Earthquake Spectra, Cilt. 31, No. 1, s. 159-177.
  • Lee, H.S., Hwang, K.R., Kim, Y.H. 2015. Seismic Performance of a 1:15-Scale 25-Story RC Flat-Plate Corewall Earthquake
  • Structural Dynamics, Cilt. 44, No. 6, s. 929-953.
  • Model, and [20] Sen, S., Singh, Y. 2015. "Seismic Performance of Flat Slab Buildings", in
  • Engineering, (Ed.) V. Matsagar, India: Springer India, s. 897-907.
  • Surumi, R.S., Jaya, K.P., Greeshma, S. 2015. Modelling and Assessment of Shear Wall–Flat Slab Joint Region in Tall Structures, Arabian Journal for Science and Engineering, Cilt. 40, No. 8, s. 2201-2217.
  • Siah, W.L., Stehle, J.S., Mendis, P., Goldsworthy, H. 2003. Interior Wide Beam Connections Subjected to Lateral
  • Engineering Structures, Cilt. 25, No. 3, s. 281-291.
  • Loading, [23] Benavent-Climent, A. 2005. Shaking Table Tests of Reinforced Concrete Wide Beam–Column Connections, [24] Benavent-Climent, A. 2007. Seismic Behavior of RC Wide Beam-Column Connections
  • Loading, Journal of Earthquake Engineering, Cilt. 11, No. 4, s. 493- 511.
  • Dynamic [25] Benavent-Climent, A., Cahis, X., Zahran, R. 2009. Exterior Wide Beam Column Connections in Existing RC Frames Subjected to Lateral
  • Engineering Structures, Cilt. 31, No. 7, s. 1414-1424.
  • Loads, [26] Benavent-Climent, A., Cahis, X., Vico, J.M. 2010. Interior Wide Beam- Column Connections in Existing RC Frames
  • Earthquake Loading, Bulletin of Earthquake Engineering, Cilt. 8, No. 2, s. 401-420. to
  • Lateral [27] Li, B., Kulkarni, S.A. 2010. Seismic Behavior of Reinforced Concrete Exterior Wide Beam-Column Joints, Journal of Structural Engineering, Cilt. 136, No. 1, s. 26-36.
  • Luk, S.H., Kuang, J.S. 2012. Seismic Behaviour of RC Exterior Wide Beam-Column Joints, 15th World Conference
  • Engineering, Cilt XIV, Lisbon, s. 10987-10996.
  • Earthquake [29] Bayındırlık ve İskân Bakanlığı. 2007. Deprem Bölgelerinde Yapılacak Binalar
  • (DBYBHY-2007), Ankara.
  • Yönetmelik [30] Türk Standartları Enstitüsü. 2000. Betonarme Yapıların Tasarım ve Yapım Kuralları (TS-500), Ankara.
  • Sta Bilgisayar Mühendislik ve Müşavirlik Ltd. Şti., STA4-CAD v13.1, Betonarme ve Çelik Bina Tasarım Yazılımı, İstanbul.
  • Computers and Structures Inc., SAP2000 Analysis California.
  • Structural Berkeley, [33] Imbsen Software Systems, XTRACT v3.0.8, Cross Section Analysis Program for Structural Engineers, California.
  • Akyıldız, A.T. 2015. Mevcut Bir Betonarme
  • Belirtilen Doğrusal Elastik Olmayan Analiz Performans
  • İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 211s, İstanbul.
  • TDY’07’de Yöntemlerine
  • Göre Değerlendirmesi. [35] Pacific Earthquake Engineering Research Center (PEER) Strong Motion
  • Database. http://ngawest2.berkeley.edu/,
  • (Erişim Tarihi: 03.05.2015).
  • Center for Engineering Strong Motion Data (CESMD), Strong- Motion
  • http://www.strongmotioncenter.or
  • g/cgi-bin/CESMD/archive.pl,
  • (Erişim Tarihi: 03.05.2015).
  • Afet ve Acil Durum Yönetimi Başkanlığı (AFAD), Deprem Dairesi Başkanlığı.
  • http://kyhdata.deprem.gov.tr/2K/k yhdata_v4.php, 05.05.2015).
  • Tarihi: [38] Seismosoft Ltd.,
  • v2.1.0, An Application for Adjusting Earthquake Accelerograms, Pavia. [39] Leng, K., Chintanapakdee,
  • C., Hayashikawa, T. 2014. Seismic Shear Forces in Shear Walls of a Medium-Rise Building Designed By Response
  • Engineering Journal, Cilt. 18, No. 4, s. 73-95.
  • Analysis, [40] Munir, A., Warnitchai, P. 2012. The Cause of Unproportionately Large Higher Mode Contributions in the Inelastic Seismic Responses of High- Rise Core-Wall
  • Buildings, [41] Pugh, J.S., Lowes, L.N., Lehman, D.E. 2014. Seismic Design of Slender Concrete Walls, Proceedings of the 10th US National Conference on Earthquake Engineering, Anchorage, Alaska, Earthquake Engineering Research Institute, s. 3267-3277.
  • American Concrete Institute. 2011. Building Code Requirements for Structural Concrete (ACI 318-11), Farmington Hills, MI.
  • American Society of Civil Engineers. 2007. Minimum Design Loads for Buildings and Other Structures (ASCE/SEI 7-10), Reston, Virginia.
  • Rutenberg, A., Nsieri, E. 2006. The Seismic Shear Demand in Ductile Cantilever Wall Systems and the EC8
  • Earthquake Engineering, Cilt. 4, No. 1, s. 1-21. of [45] European Committee
  • for 2004. Standardization
  • Eurocode (EC) 8: ‘Design of Structures
  • Resistance – Part 1 General Rules, Seismic Actions and Rules for Buildings’ (EN 1998-1), Brussels.
  • New Zealand Standards Association. 1995. NZS 3101 Code of Practice for the Design of Concrete Structures (Parts 1 & 2), Wellington.
  • Kazaz, İ., Gülkan, P. 2013. Perde- Çerçeve Sistemlerde Kesme Kuvveti Dinamik Büyütme Katsayısı, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Hatay, p.128.
  • Salonikios, T.N., Kappos, A.J., Tegos, I.A., Penelis, G.G. 2000. Cyclic Load Behavior
  • Reinforced Concrete Walls: Failure Modes, Strength and Deformation Analysis, and Design Implications, ACI Structural Journal, Cilt. 97, No. 1, s. 132-142.
  • Sedgh, R.E., Dhakal, R.P., Carr, A.J. 2015. State of the Art: Challenges in Analytical Modelling of Multi-Storey Shear Wall Buildings, New Zealand Society for Earthquake Engineering Annual Conference (NZSEE2015), Rotorua, New Zealand, p.O-15.
  • Kazaz, İ., Gülkan, P., Yakut, A. 2012. Performance Limits for Structural Walls: An Analytical Perspective, Engineering Structures, Cilt. 43, No. 1, s. 105-119.
  • Constantin, R., Beyer, K. 2016. Behaviour of U-shaped RC Walls under Quasi-Static Cyclic Diagonal Loading, Engineering Structures, Cilt. 106, No. 1, s. 36-52.
  • Beyer, K., Dazio, A., Priestley, M.J.N. 2011. Shear Deformations of Slender Reinforced Concrete Walls under
  • Structural Journal, Cilt. 108, No. 2, s. 167-177.
  • ACI [53] Kalkan, E., Kunnath, S.K. 2007. Assessment of Current Nonlinear Static Procedures for Seismic Evaluation of Buildings, Engineering Structures, Cilt. 29, No. 3, s. 305-316. [54] Krawinkler, H., Seneviratna, G.D.P.K. 1998. Pros and Cons of a Pushover Analysis of Seismic Performance Evaluation, Engineering Structures, Cilt. 20, No. 4-6, s. 452-464.
  • Penelis, G.G., Kappos, A.J. 2002. 3D Pushover Analysis: The Issue of Torsion, 12th European Conference on Earthquake Engineering, London, p.015. [56] Aydınoğlu, M.N.
  • Incremental Response Spectrum Analysis Procedure Based on Inelastic Spectral Displacements for Multi-Mode Seismic Performance Evaluation, Bulletin of Earthquake Engineering, Cilt. 1, No. 1, s. 3-36.
  • Chopra, A.K., Goel, R.K. 2004. A Modal Pushover Analysis Procedure to Estimate Seismic Demands for Unsymmetric-Plan Earthquake
  • Structural Dynamics, Cilt. 33, No. 8, s. 903-927.
  • Buildings, Engineering
  • and [58] Fajfar, P., Marusic, D., Perus, I. 2005. Torsional Effects in the Pushover- Based Seismic Analysis of Buildings, Journal of Earthquake Engineering, Cilt. 9, No. 6, s. 831-854.
  • Baros, D.K., Anagnostopoulos, SA. 2008. An Overview of Pushover Procedures for the Analysis of Buildings Susceptible to Torsional Behavior, Conference
  • Engineering, Beijing, p.01-0195.
  • Earthquake Steel-Braced
  • Frame [62] Aka, İ. 2015. Kentsel Dönüşüm ve Asmolen Döşeme, İMO İstanbul Bülten, Sayı 132, s. 12-14.
  • Dönmez, C. 2013. Türkiye’deki Asmolen
  • Yeterliliği Konusunda Bir İrdeleme, 2. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, Hatay, p.013. [64] Apostolska, R.P.,
  • Cvetanovska, G.S., Cvetanovska, J.P., Mircic,
  • Performance of Flat-Slab Building Structural Systems, The 14th World Conference
  • Engineering, Beijing, p.01-0435.
  • Lelekakis, G.E., Birda, A.T., Mitoulis, S.A., Chrysanidis, T.A., Tegos, I.A. 2008. Applications of Flat Slab R/C Structures in Seismic Regions, Fifth European Workshop on the Seismic Behaviour of Irregular and Complex Structures, Catania, s. 99-113.
  • Değer, Z.T., Yang, T.Y., Wallace, J.W., Moehle,
  • Performance of Reinforced Concrete Core Wall Buildings With and Without Moment Resisting Frames, The Structural Design of Tall and Special Buildings, Cilt. 24, No. 7, s. 477-490. Seismic
There are 109 citations in total.

Details

Other ID JA34MA59AK
Journal Section Research Article
Authors

Ahmet Tuğrul Akyıldız This is me

Konuralp Girgin This is me

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 55

Cite

APA Akyıldız, A. T., & Girgin, K. (2017). İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(55), 100-121.
AMA Akyıldız AT, Girgin K. İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması. DEUFMD. January 2017;19(55):100-121.
Chicago Akyıldız, Ahmet Tuğrul, and Konuralp Girgin. “İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 55 (January 2017): 100-121.
EndNote Akyıldız AT, Girgin K (January 1, 2017) İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 55 100–121.
IEEE A. T. Akyıldız and K. Girgin, “İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması”, DEUFMD, vol. 19, no. 55, pp. 100–121, 2017.
ISNAD Akyıldız, Ahmet Tuğrul - Girgin, Konuralp. “İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/55 (January 2017), 100-121.
JAMA Akyıldız AT, Girgin K. İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması. DEUFMD. 2017;19:100–121.
MLA Akyıldız, Ahmet Tuğrul and Konuralp Girgin. “İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 55, 2017, pp. 100-21.
Vancouver Akyıldız AT, Girgin K. İstanbul’un Kentsel Dönüşümü için Üretilen Binaların Deprem Güvenliklerinin Araştırılması. DEUFMD. 2017;19(55):100-21.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.