BibTex RIS Cite

IMPROVING THE SPECIFIC RATES OF BREAKAGE OF KAOLEN IN THE BALL MILL BY MICROWAVE DRYING DOI Numarası (DOI Number): 10.21205/deufmd. 2017195522

Year 2017, Volume: 19 Issue: 55, 267 - 278, 01.01.2017

Abstract

In this study, grinding tests were carried out to
determine the effects of microwave drying on specific breakage
rate in a ball mill. Kaolen samples, taken from
Balikesir/Duvertepe, were prepared at mono size groups (-
3350+2360 μm, -2360+1700 μm and -1180+850 μm) for grinding
tests performed as dry in Bond ball mill which was run at 70 rpm.
The kaolen samples prepared at mono size groups were dried in
conventional oven (at 105 Co with 4 hours) and microwave oven
(at 850 W with 12 minutes) in order to remove rough moisture
value (1.5%) from the samples prior to grinding. As a result of the
grinding tests it was determined that the specific rates of
breakage at all three mono sized kaolen samples treated with
microwave drying were faster than those of the untreated kaolen
samples.

References

  • [1] Fuerstenau, D.W., De, A., Kapur, P.C., 2004. Linear and nonlinear particle breakage process in comminution systems, Int. J. Miner. Process., Cilt.74, s.317-327.
  • [2] Rhodes, M. 1998. Introduction to particle technology, Wiley, Chichester, UK.
  • [3] Özkan, A., Ünal, M., Kekeç, B. 2006. Mikrodalga ön işleminin traverten ve mermerin kırılma hızına ve ultrasonik özelliklerine etkisi, S.Ü. Müh. Mim. Fak. Derg., Cilt.21, s.143-152.
  • [4] Güngör, A. 1998. Grindability of Microwave-heated Ores, M.Sc. Thesis, The Graduate School of Natural and Applied Sciences of METU, Ankara.
  • [5] Whittles, D.N., Kingman, S.W., Reddish D.J. 2003. Application of numerical modeling for prediction of the influence of power density on microwave assisted breakage, Int. J. Miner. Process., Cilt.68, 71-91.
  • [6] Kingman, S.W., Jackson, K., Cumbane A., Bradshaw, S.M., Rowson, N.A. 2004. Greenwood R., Recent developments in microwave-assisted comminution, Int. J. Miner. Process., Cilt.74, , s.71-83.
  • [7] Kingman, S.W. 1999. The Influence of microwave radiation on the comminution and beneficiation of minerals. Ph.D. thesis. University of Birmingham, UK.
  • [8] Wang, Y., Forssberg, E., Svensson, M. 2000. Microwave assisted communition and liberation of minerals, Proceedings of the 8th Int. Min. Process. Symp., Balkema, Rotterdam, s.3-9.
  • [9] Rao, K.J., Vaidhyanathan, B., Ganguli, M., Ramakrishnan, P.A. 1999. Synthesis of inorganic solids using microwaves, Chem. Mater., Cilt.11, s.882-895.
  • [10] Schiffmann, R.F. 1995. Commercializing Microwave Ssystems: Path to Success or Failure. Microwaves: Theory and Application in Material Processing, 111. In: Clark, D.E., Folz, D.C., Oda, SJ., Silberglit, R. (eds.), Ceramic Transc., Cilt.59.
  • [11] Haque, K.E. 1999. Microwave Energy for Mineral Treatment Processes-a Brief Review, International Journal of Mineral Processing, Cilt.57, s.1-24.
  • [12] Jones, D.A, Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W., Miles, N.M. 2002. Microwave Heating Applications in Environmental Engineering-A review, Resources, Conservation and Recycling, Cilt.34, s.75- 90.
  • [13] Wang, Y., Forrsberg, E. 2000. Microwave assisted comminution and liberation of minerals, Mineral Processing on the Verge of the 21st Century, Özbayoğlu et al. (eds), Rotterdam.
  • [14] Lester, E., Kingman, S. 2004. The effect of microwave pre-heating on five different coals, Fuel, Cilt.83, s.1941- 1947.
  • [15] Kingman, S.W, Rowson, N.A. 2000. The Effect of Microwave Radiation on the Magnetic Properties of Minerals, Journal of Microwave Power and Electromagnetic Energy, Cilt.35, s.144- 150.
  • [16] Toraman, O.Y., Depci, T. 2007. Kömürde mikrodalga ile önişlem uygulamaları, Madencilik, Cilt.46, Sayı.3, s.43-53.
  • [17] Marland, S., Han, B., Merchant, A., Rowson, N. 2000. The effect of microwave radiation on coal grindability, Fuel, Cilt.79, s.1283-1288.
  • [18] Marland, S., Merchant, A., Rowson, N. 2001. Dielectric properties of coal, Fuel, Cilt.80, s.1839-1849.
  • [19] Elsamak, G.G., Oztas, N.A., Yürüm, Y. 2003. Chemical desulfurization of Turkish Cayirhan lignite with HI using microwave and thermal energy, Fuel, Cilt.82, s.531-537.
  • [20] Gümüşderelioğlu, M., Kaynak. G. 2012. Mikrodalgalar ve Uygulamaları, Bilim ve Teknik, Temmuz, s.38-42.
  • [21] Uslu, T., Atalay, U. 2003. Microwave heating of coal for enhanced magnetic removal of pyrite, Fuel Process Technol, Cilt.85, s.21-29.
  • [22] Kingman, S.W., Vorster, W., Rowson, NA. 2000. The influence of mineralogy on microwave assisted grinding, Miner Eng., Cilt.13, s.313-327.
  • [23] Olubambi, P.A., Potgieter, J.H., Hwang, J.Y., Ndlovu, S. 2007. Influence of microwave heating on the processing and dissolution behavior of low-grade complex sulphide ores, Hydrometallurgy, Cilt.89, s.127-135.
  • [24] Jones, D.A., Kingman, S.W., Whittles, D.N., Lowndes, I.S. 2005. Understanding microwave assisted breakage, Miner Eng., Cilt.18, s.659-669.
  • [25] Amankwah, R.K., Khan, A.U., Pickles, C.A., Yen, W.T. 2005. Improved grindability and gold liberation by microwave pretreatment of a freemilling gold ore, Miner Process Extr Metall, Cilt.114, s.30-36.
  • [26] Chen, T.T., Dutrizac, J.E., Haque, K.E., Wyslouzil, W., Kashyap, S. 1984. The relative transparency of minerals to microwave radiation, Can. Metall. Q., Cilt.23, s.349-51.
  • [27] Roberts, E.J. 1950. The probability theory of wet ball milling and its applications, Trans. SME/AIME, Cilt.187, s.267-272.
  • [28] Bowdish, F.K. 1960. Theorical and experimental studies of kinetics of grinding in a ball mill, Trans. SME/AIME, Cilt.217, s.194-202.
  • [29] Lynch, A.J., Whiten, W.J., Narayanan, S.S. 1986. Ball mill models: Their evaluation and present status, Advances in Mineral Processing, SME/AIME Pub., Littleton, CO., s.48-66.
  • [30] Klimpel, R.R., Austin, L.G. 1970. Determination of selection for breakage functions in the batch grinding equation by nonlinear optimization, Ind. Eng. Chem. Fundam, Cilt.9, s.230-237.
  • [31] Austin, L.G., Klimpel, R.R., Luckie, P.T. 1984. The process engineering of size reduction: ball milling, SME-AIME, New York, s.561.
  • [32] Anon a. 2014. mindat.org-the mineral and locality database, http://www.mindat.org/
  • [33] Akıncı, Ö. 1967. Seramik Killeri ve Jeolojisi, MTA, Ankara, Sayı.71, s.1-12.
  • [34] Çelik, H., Samanlı, S., Öney, Ö., Can, Y. 2015. Uşak Yöresi (Paçacıoğlu Köyü) Kaolenitik Kil Yataklarının Karakteristik Özelliklerinin Araştırılması, 9. Uluslararası Endüstriyel Hammaddeler Sempozyumu Bildiriler Kitabı, 14-15 Mayıs, İzmir-Türkiye, s.117-124

MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ

Year 2017, Volume: 19 Issue: 55, 267 - 278, 01.01.2017

Abstract

Bu çalışmada; Balıkesir/Düvertepe’den alınan kaolen
numunesi üzerinde dar tane boyut gruplarında (-3350+2360 μm,
-2360+1700 μm ve -1180+850 μm) mikrodalga kurutmanın özgül
kırılma hızına olan etkisini belirlemeye yönelik öğütme testleri
yapılmıştır. Öğütme testleri Bond tipi bilyalı değirmende 70
dev/dak ile kuru olarak gerçekleştirilmiştir. Deneylerde kullanılan
kaolen numunesi dar tane boyut gruplarında etüvde (105 oC’ de 4
saat) ve mikrodalga fırında (850 W’ da 12 dk) kurutulmuş ve
kaba nem değeri (%1,5) öğütme öncesi numunelerden
uzaklaştırılmıştır. Sonuçta; her üç dar tane boyut grubunda da,
mikrodalga işleme tabi tutulmuş kaolen numunesinin
konvansiyonel olarak etüvde kurutulmuş kaolen numunesine
kıyasla kırılma hızlarında belirgin artış olduğu belirlenmiştir.

References

  • [1] Fuerstenau, D.W., De, A., Kapur, P.C., 2004. Linear and nonlinear particle breakage process in comminution systems, Int. J. Miner. Process., Cilt.74, s.317-327.
  • [2] Rhodes, M. 1998. Introduction to particle technology, Wiley, Chichester, UK.
  • [3] Özkan, A., Ünal, M., Kekeç, B. 2006. Mikrodalga ön işleminin traverten ve mermerin kırılma hızına ve ultrasonik özelliklerine etkisi, S.Ü. Müh. Mim. Fak. Derg., Cilt.21, s.143-152.
  • [4] Güngör, A. 1998. Grindability of Microwave-heated Ores, M.Sc. Thesis, The Graduate School of Natural and Applied Sciences of METU, Ankara.
  • [5] Whittles, D.N., Kingman, S.W., Reddish D.J. 2003. Application of numerical modeling for prediction of the influence of power density on microwave assisted breakage, Int. J. Miner. Process., Cilt.68, 71-91.
  • [6] Kingman, S.W., Jackson, K., Cumbane A., Bradshaw, S.M., Rowson, N.A. 2004. Greenwood R., Recent developments in microwave-assisted comminution, Int. J. Miner. Process., Cilt.74, , s.71-83.
  • [7] Kingman, S.W. 1999. The Influence of microwave radiation on the comminution and beneficiation of minerals. Ph.D. thesis. University of Birmingham, UK.
  • [8] Wang, Y., Forssberg, E., Svensson, M. 2000. Microwave assisted communition and liberation of minerals, Proceedings of the 8th Int. Min. Process. Symp., Balkema, Rotterdam, s.3-9.
  • [9] Rao, K.J., Vaidhyanathan, B., Ganguli, M., Ramakrishnan, P.A. 1999. Synthesis of inorganic solids using microwaves, Chem. Mater., Cilt.11, s.882-895.
  • [10] Schiffmann, R.F. 1995. Commercializing Microwave Ssystems: Path to Success or Failure. Microwaves: Theory and Application in Material Processing, 111. In: Clark, D.E., Folz, D.C., Oda, SJ., Silberglit, R. (eds.), Ceramic Transc., Cilt.59.
  • [11] Haque, K.E. 1999. Microwave Energy for Mineral Treatment Processes-a Brief Review, International Journal of Mineral Processing, Cilt.57, s.1-24.
  • [12] Jones, D.A, Lelyveld, T.P., Mavrofidis, S.D., Kingman, S.W., Miles, N.M. 2002. Microwave Heating Applications in Environmental Engineering-A review, Resources, Conservation and Recycling, Cilt.34, s.75- 90.
  • [13] Wang, Y., Forrsberg, E. 2000. Microwave assisted comminution and liberation of minerals, Mineral Processing on the Verge of the 21st Century, Özbayoğlu et al. (eds), Rotterdam.
  • [14] Lester, E., Kingman, S. 2004. The effect of microwave pre-heating on five different coals, Fuel, Cilt.83, s.1941- 1947.
  • [15] Kingman, S.W, Rowson, N.A. 2000. The Effect of Microwave Radiation on the Magnetic Properties of Minerals, Journal of Microwave Power and Electromagnetic Energy, Cilt.35, s.144- 150.
  • [16] Toraman, O.Y., Depci, T. 2007. Kömürde mikrodalga ile önişlem uygulamaları, Madencilik, Cilt.46, Sayı.3, s.43-53.
  • [17] Marland, S., Han, B., Merchant, A., Rowson, N. 2000. The effect of microwave radiation on coal grindability, Fuel, Cilt.79, s.1283-1288.
  • [18] Marland, S., Merchant, A., Rowson, N. 2001. Dielectric properties of coal, Fuel, Cilt.80, s.1839-1849.
  • [19] Elsamak, G.G., Oztas, N.A., Yürüm, Y. 2003. Chemical desulfurization of Turkish Cayirhan lignite with HI using microwave and thermal energy, Fuel, Cilt.82, s.531-537.
  • [20] Gümüşderelioğlu, M., Kaynak. G. 2012. Mikrodalgalar ve Uygulamaları, Bilim ve Teknik, Temmuz, s.38-42.
  • [21] Uslu, T., Atalay, U. 2003. Microwave heating of coal for enhanced magnetic removal of pyrite, Fuel Process Technol, Cilt.85, s.21-29.
  • [22] Kingman, S.W., Vorster, W., Rowson, NA. 2000. The influence of mineralogy on microwave assisted grinding, Miner Eng., Cilt.13, s.313-327.
  • [23] Olubambi, P.A., Potgieter, J.H., Hwang, J.Y., Ndlovu, S. 2007. Influence of microwave heating on the processing and dissolution behavior of low-grade complex sulphide ores, Hydrometallurgy, Cilt.89, s.127-135.
  • [24] Jones, D.A., Kingman, S.W., Whittles, D.N., Lowndes, I.S. 2005. Understanding microwave assisted breakage, Miner Eng., Cilt.18, s.659-669.
  • [25] Amankwah, R.K., Khan, A.U., Pickles, C.A., Yen, W.T. 2005. Improved grindability and gold liberation by microwave pretreatment of a freemilling gold ore, Miner Process Extr Metall, Cilt.114, s.30-36.
  • [26] Chen, T.T., Dutrizac, J.E., Haque, K.E., Wyslouzil, W., Kashyap, S. 1984. The relative transparency of minerals to microwave radiation, Can. Metall. Q., Cilt.23, s.349-51.
  • [27] Roberts, E.J. 1950. The probability theory of wet ball milling and its applications, Trans. SME/AIME, Cilt.187, s.267-272.
  • [28] Bowdish, F.K. 1960. Theorical and experimental studies of kinetics of grinding in a ball mill, Trans. SME/AIME, Cilt.217, s.194-202.
  • [29] Lynch, A.J., Whiten, W.J., Narayanan, S.S. 1986. Ball mill models: Their evaluation and present status, Advances in Mineral Processing, SME/AIME Pub., Littleton, CO., s.48-66.
  • [30] Klimpel, R.R., Austin, L.G. 1970. Determination of selection for breakage functions in the batch grinding equation by nonlinear optimization, Ind. Eng. Chem. Fundam, Cilt.9, s.230-237.
  • [31] Austin, L.G., Klimpel, R.R., Luckie, P.T. 1984. The process engineering of size reduction: ball milling, SME-AIME, New York, s.561.
  • [32] Anon a. 2014. mindat.org-the mineral and locality database, http://www.mindat.org/
  • [33] Akıncı, Ö. 1967. Seramik Killeri ve Jeolojisi, MTA, Ankara, Sayı.71, s.1-12.
  • [34] Çelik, H., Samanlı, S., Öney, Ö., Can, Y. 2015. Uşak Yöresi (Paçacıoğlu Köyü) Kaolenitik Kil Yataklarının Karakteristik Özelliklerinin Araştırılması, 9. Uluslararası Endüstriyel Hammaddeler Sempozyumu Bildiriler Kitabı, 14-15 Mayıs, İzmir-Türkiye, s.117-124
There are 34 citations in total.

Details

Other ID JA94VT56JT
Journal Section Research Article
Authors

Selçuk Samanlı This is me

Özcan Öney This is me

Kamil Geveze This is me

Publication Date January 1, 2017
Published in Issue Year 2017 Volume: 19 Issue: 55

Cite

APA Samanlı, S., Öney, Ö., & Geveze, K. (2017). MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 19(55), 267-278.
AMA Samanlı S, Öney Ö, Geveze K. MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ. DEUFMD. January 2017;19(55):267-278.
Chicago Samanlı, Selçuk, Özcan Öney, and Kamil Geveze. “MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 19, no. 55 (January 2017): 267-78.
EndNote Samanlı S, Öney Ö, Geveze K (January 1, 2017) MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19 55 267–278.
IEEE S. Samanlı, Ö. Öney, and K. Geveze, “MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ”, DEUFMD, vol. 19, no. 55, pp. 267–278, 2017.
ISNAD Samanlı, Selçuk et al. “MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 19/55 (January 2017), 267-278.
JAMA Samanlı S, Öney Ö, Geveze K. MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ. DEUFMD. 2017;19:267–278.
MLA Samanlı, Selçuk et al. “MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 19, no. 55, 2017, pp. 267-78.
Vancouver Samanlı S, Öney Ö, Geveze K. MİKRODALGA KURUTMANIN KAOLEN NUMUNESİNİN BİLYALI DEĞİRMENDEKİ ÖZGÜL KIRILMA HIZINI ARTIRICI ETKİSİ. DEUFMD. 2017;19(55):267-78.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.