BibTex RIS Cite

NORMALİZE WRİGHT FONKSİONLARININ KONVEKSE-YAKINLIĞI

Year 2016, Volume: 18 Issue: 54, 290 - 303, 01.09.2016

Abstract

In this paper, a new subclass
K( , ), , 0,1      
of analytic functions in the open unit disk
is introduced. The purpose of the present paper is to investigate some characterizations for the
normalized Wright functions to be in the subclass
K( , ), , 0,1      . In this study,
various sufficient conditions for the normalized Wright functions to be in this class are also
obtained

References

  • [1] Wright EM. On the coefficients of power series having exponential singularities, Journal London Mathematics Society, Volume 8, 1933, pp.71-79.
  • [2] Gorenflo R, Luchko Yu, Mainardi F. Analytic properties and applications of Wright functions, Fractional Calculus & Applied Analysis, Volume 2, No. 4, 1999, pp.383-414.
  • [3] Podlubny I. Fractional differential equations, San Diego: Academic Press, 1999.
  • [4] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: Theory and Applications, New York: Gordon and Breach, 1993.
  • [5] Mainardi F. (Ed. Carpinteri A and Mainardi F.) Fractional calculus: some basic problemsin continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics, Wen: Springer Verlag, 1971.
  • [6] Luchko Yu, Gorenflo R. Scale-invariant solutions of a partial differential equation of fractional order, Fractional Calculus & Applied Analysis, Volume 1, No 1, 1998, pp. 63- 78.
  • [7] Prajapat JK. Certain geometric properties of the Wright function, Inegral Transforms and Special Functions, Volume 26, No. 3, 2015, pp. 203-212.
  • [8] Duren PL. Univalent Functions, Grundlehren der Mathematischen Wissenshaften, Bd. 259, New York: Springer-Verlag, 1983.
  • [9] Goodman AW. Univalent Functions, Volume I, Washington: Polygonal, 1983.
  • [10] Srivastava HM and Owa S. (Editors) Current Topics in Analytic Function Theory,Singapore: World Scientific, 1992
  • [11] Goodman AW. Univalent functions, Vols. 1-2, Tampa, FL: Mariner, 1983.
  • [12] Murugusundaramoorthy G, Vijaya K and Porwal S. Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacettepe Journal of Mathematics and Statistics, DOI: 10.15672/HJMS201664513110. (In press).

CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS

Year 2016, Volume: 18 Issue: 54, 290 - 303, 01.09.2016

Abstract

Bu makalede açık birim diskte analitik fonksiyonların
K( , ), , 0,1      
yeni bir alt sınıfı
tanımlandı. Makalenin amacı, normalize Wright fonksiyonlarının analitik fonksiyonların
K( , ), , 0,1      
alt sınıfına ait olması içinbazı karakterizasyonları araştırmaktır. Bu
çalışmada normalize Wright fonksiyonlarının bu sınıfa ait olması için çeşitli yeterli koşullar
da elde edilir

References

  • [1] Wright EM. On the coefficients of power series having exponential singularities, Journal London Mathematics Society, Volume 8, 1933, pp.71-79.
  • [2] Gorenflo R, Luchko Yu, Mainardi F. Analytic properties and applications of Wright functions, Fractional Calculus & Applied Analysis, Volume 2, No. 4, 1999, pp.383-414.
  • [3] Podlubny I. Fractional differential equations, San Diego: Academic Press, 1999.
  • [4] Samko SG, Kilbas AA, Marichev OI. Fractional integrals and derivatives: Theory and Applications, New York: Gordon and Breach, 1993.
  • [5] Mainardi F. (Ed. Carpinteri A and Mainardi F.) Fractional calculus: some basic problemsin continuum and statistical mechanics. In: Fractals and Fractional Calculus in Continuum Mechanics, Wen: Springer Verlag, 1971.
  • [6] Luchko Yu, Gorenflo R. Scale-invariant solutions of a partial differential equation of fractional order, Fractional Calculus & Applied Analysis, Volume 1, No 1, 1998, pp. 63- 78.
  • [7] Prajapat JK. Certain geometric properties of the Wright function, Inegral Transforms and Special Functions, Volume 26, No. 3, 2015, pp. 203-212.
  • [8] Duren PL. Univalent Functions, Grundlehren der Mathematischen Wissenshaften, Bd. 259, New York: Springer-Verlag, 1983.
  • [9] Goodman AW. Univalent Functions, Volume I, Washington: Polygonal, 1983.
  • [10] Srivastava HM and Owa S. (Editors) Current Topics in Analytic Function Theory,Singapore: World Scientific, 1992
  • [11] Goodman AW. Univalent functions, Vols. 1-2, Tampa, FL: Mariner, 1983.
  • [12] Murugusundaramoorthy G, Vijaya K and Porwal S. Some inclusion results of certain subclass of analytic functions associated with Poisson distribution series. Hacettepe Journal of Mathematics and Statistics, DOI: 10.15672/HJMS201664513110. (In press).
There are 12 citations in total.

Details

Other ID JA86HK59ZE
Journal Section Research Article
Authors

Nizami Mustafa This is me

Publication Date September 1, 2016
Published in Issue Year 2016 Volume: 18 Issue: 54

Cite

APA Mustafa, N. (2016). CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(54), 290-303.
AMA Mustafa N. CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. DEUFMD. September 2016;18(54):290-303.
Chicago Mustafa, Nizami. “CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, no. 54 (September 2016): 290-303.
EndNote Mustafa N (September 1, 2016) CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 54 290–303.
IEEE N. Mustafa, “CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS”, DEUFMD, vol. 18, no. 54, pp. 290–303, 2016.
ISNAD Mustafa, Nizami. “CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/54 (September 2016), 290-303.
JAMA Mustafa N. CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. DEUFMD. 2016;18:290–303.
MLA Mustafa, Nizami. “CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 18, no. 54, 2016, pp. 290-03.
Vancouver Mustafa N. CLOSE-TO-CONVEXITY OF NORMALIZED WRIGHT FUNCTIONS. DEUFMD. 2016;18(54):290-303.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.