BibTex RIS Cite

WIND POWER POTENTIAL ESTIMATION BY USING DIFFERENT STATISCAL DISTRIBUTIONS

Year 2016, Volume: 18 Issue: 54, 362 - 380, 01.09.2016

Abstract

Wind speed, accepted as a continuous random variable, is characterized by statistical distributions. Based on this characterization, wind power is estimated. The Weibull distribution is an accepted distribution in wind energy field. However, it is observed by means of scientific studies that the Weibull distribution does not model all wind types encountered in nature. In this study, the performances of the Weibull, Rayleigh, log-normal, Gamma, Generalized Gamma distributions and Nakagami, which is previously not used in energy field, are evaluated in terms of several criteria. The performances of the considered distributions have been reseached on wind speed measured in different regions of Turkey and it is observed that the Nagakami distribution shows better performance than the others. Thus, it is concluded that the Nakagami distribution can be used as an alternative distribution in wind energy field

References

  • Özgener Ö, Türkiye’de ve dünya’da rüzgar enerjisi kullanımı, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt: 4, No. 3, 2002, s.159–173.
  • Karadenizli A, Eker MK., Balıkesir-Balya meteoroloji istasyonu verileri kullanılarak Weibull fonksiyonu parametrelerinin 6 farklı metodla belirlenmesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt. 17, No. 3, 2015, s.163-175.
  • Özgür, M.A., Peker, Ö., Köse, R. Kütahya’da Rüzgar Karakteristiğinin İstatistiksel Olarak Değerlendirilmesi, 6. Ulusal Temiz Enerji Sempozyumu, Isparta, Türkiye, 25-27 Mayıs, 2006.
  • Celik AN. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey, Renewable Energy, Cilt. 29, No. 4, 2004, s.593– 604.
  • Akpinar EK, Akpinar S. Determination of the wind energy potential for Maden, Turkey, Energy Conversion and Management, Cilt. 45, No.18-19, 2004, s.2901–14.
  • Ucar A, Balo F. Evaluation of wind energy potential and electricity generation at six locations in Turkey, Applied Energy, Cilt. 86, No. 10, 2009, s.1864–71.
  • Akdag S, Guler O. Calculation of wind energy potential and economic analysis by using Weibull distribution-a case study from Turkey. Part 1: Determination of Weibull Parameters, Energy Sources Part B, Cilt. 4, No.1, 2009, s.1–8.
  • Fazelpour F, Soltani N, Soltani S, Rosen MA. Assessment of wind energy potential and economics in the north-western iranian cities of Tabriz and Ardabil, Renewable and Sustainable Energy Reviews, Cilt. 5, 2015, s. 87–99.
  • Islam MR, Saidur R, Rahim NA. Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function, Energy, Cilt. 36, No. 2, 2011, s.985–92.
  • Ouammi A, Dagdougui H, Sacile R, Mimet A. Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy), Renewable and Sustainable Energy Reviews, Cilt. 14, No. 7, 2010, s.1959–1968.
  • Safari B, Gasore J. A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda, Renewable Energy, Cilt. 35, No. 12, 2010, s.2874–80.
  • Kantar YM, Senoglu B. A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter, Computers&Geosciences, Cilt. 34, 2008, 1900–9.
  • Yavuz AA. Estimation of the Shape Parameter of the Weibull Distribution Using Linear Regression Methods: Non-Censored Samples, Quality and Reliability Engineering International, Cilt. 29, No. 8, 2013, s.1207–1219.
  • Arslan T, Bulut YM, Yavuz AA. Comparative study of numerical methods for determining Weibull parameters for wind energy potential, Renewable and Sustainable Energy Reviews, Cilt. 40, 2014, s. 820–25.
  • Akdag S, Dinler A. A novel energy pattern factor method for wind speed distribution parameter estimation. Energy Conversion and Management Cilt. 106, 2015, s.1124–1133.
  • Kantar YM, Usta I., Acitas. A Monte Carlo Simulation Study on Partially Adaptive Estimators of Linear Regression Models, Journal of Applied Statistics, Cilt. 38, 2011, s. 1681-1699.
  • Kantar YM, Usta İ, Yenilmez İ, Arik İ. Comparison of some estimation methods of the two parameter Weibull distribution for unusual wind speed data cases, Bilişim Teknolojileri Dergisi, Cilt. 9, No. 2, 2016, s.81-89.
  • Usta I. Different estimation methods for the parameters of the extended Burr XII distribution. Journal of Applied Statistics, Cilt. 40, No.2, 2013, 397–414.
  • Usta I. An innovative estimation method regarding Weibull parameters for wind energy applications. Energies, Cilt. 106, 2016, s. 301- 314.
  • Akdag SA, Bagiorgas HS, Mihalakakou G. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean, Applied Energy, Cilt. 87, No. 8, 2010, s.2566–73.
  • Chang TP. Estimation of wind energy potential using different probability density functions, Applied Energy, Cilt. 88, No. 5, 2011, s.1848-1856.
  • Kantar YM, Usta I. Analysis of wind speed distributions: wind distribution function derived from minimum cross entropy principles as better alternative to Weibull function. Energy Conversion and Management, Cilt. 49, 2008, s. 962–73.
  • Usta I, Kantar YM. Analysis of some flexible families of distributions for estimation of wind speed distributions, Applied Energy, Cilt. 89, No.1, 2012, s. 355–67.
  • Kantar YM, Usta I. Analysis of the upper-truncated Weibull distribution for wind speed. Energy Conversion and Management, Cilt. 96, 2015, s.81–88.
  • Soukissian T. Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution, Applied Energy, Cilt. 111, 2013, s.982–1000
  • Ozgur MA, Arslan O, Kose R, Peker KO. Statistical Evaluation of Wind Characteristics in Kütahya, Turkey, Energy Sources Part A-Recovery Utilization and Environmental Effects, Cilt. 31, No. 16, 2009, s.1450-1463.
  • Morgan EC, Matthew L, Vogel RM, Baise LG. Probability distributions for offshore wind speeds, Energy Conversion and Management, Cilt. 52, No.1, 2011, s.15–26.
  • Morgan VT. Statistical distributions of wind parameters at Sydney, Australia, Renewable Energy, Cilt. 6, No. 1, 1995, s.39–47.
  • Kantar YM, Usta İ, Yenilmez İ, Arik İ. A Study on estimation of wind speed distribution by using the Modified Weibull distribution, Bilişim Teknolojileri Dergisi, Cilt. 9, No. 2, 2016, s.63-70
  • İmal M., Şekkeli M., Yıldız C. (2012). Kahramanmaran Sütçü İmam Üniversitesi Ana kampüste rüzgar enerji potansiyeli araştırması ve değerlendirmesi, KSU Mühendislik Bilimleri Dergisi, Cilt.15, No. 2, 2012.
  • Khodabina M., Ahmadabadib A., Some properties of generalized gamma distribution, Mathematical Sciences, Cilt. 4, No. 1, 2010, s. 9-28.
  • Kolar R., Jan RJ. Estimator Comparison of the Nakagami-m parameter and its application in echocardiography, Radioengineering, Cilt. 13, No. 1, 2004.
  • Rüzgar Enerjisine Dayalı Lisans Başvurularının Teknik Değerlendirilmesi Hakkında Yönetmelik, Tarihi: 07.11.2015. Erişim

FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ

Year 2016, Volume: 18 Issue: 54, 362 - 380, 01.09.2016

Abstract

Sürekli rassal değişken olarak kabul edilen rüzgâr hızı istatistiksel dağılımlarla karakterize edilir ve ortalama rüzgâr gücü tahminleri yapılır. Weibull dağılımı rüzgar enerjisi alanında kabul edilmiş dağılımdır. Ancak Weibull dağılımının doğa da karşılaşılan tüm rüzgar tiplerini modelleyemediği bilimsel çalışmalar yardımıyla bilinmektedir. Bu çalışmada, Weibull, Rayleigh, Log-normal, Gamma, Genelleşmiş Gamma dağılımları ve daha önce enerji alanında kullanılmamış olan Nakagami dağılımının performası çeşitli kriterler yardımıyla değerlendirilmiştir. Türkiye’nin farklı bölgelerinde ölçülen rüzgar hızı verileri üzerinde ele alınan dağılımların performansları araştırılmış, yapılan analizlerin sonucu olarak Nakagami dağılımının performasının yüksek olduğu gözlemlenmiştir. Böylece, Nakagami dağılımının rüzgar enerjisi alanında alternatif bir dağılım olarak kullanılabileceği sonucuna ulaşılmıştır

References

  • Özgener Ö, Türkiye’de ve dünya’da rüzgar enerjisi kullanımı, DEÜ Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt: 4, No. 3, 2002, s.159–173.
  • Karadenizli A, Eker MK., Balıkesir-Balya meteoroloji istasyonu verileri kullanılarak Weibull fonksiyonu parametrelerinin 6 farklı metodla belirlenmesi, Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, Cilt. 17, No. 3, 2015, s.163-175.
  • Özgür, M.A., Peker, Ö., Köse, R. Kütahya’da Rüzgar Karakteristiğinin İstatistiksel Olarak Değerlendirilmesi, 6. Ulusal Temiz Enerji Sempozyumu, Isparta, Türkiye, 25-27 Mayıs, 2006.
  • Celik AN. A statistical analysis of wind power density based on the Weibull and Rayleigh models at the southern region of Turkey, Renewable Energy, Cilt. 29, No. 4, 2004, s.593– 604.
  • Akpinar EK, Akpinar S. Determination of the wind energy potential for Maden, Turkey, Energy Conversion and Management, Cilt. 45, No.18-19, 2004, s.2901–14.
  • Ucar A, Balo F. Evaluation of wind energy potential and electricity generation at six locations in Turkey, Applied Energy, Cilt. 86, No. 10, 2009, s.1864–71.
  • Akdag S, Guler O. Calculation of wind energy potential and economic analysis by using Weibull distribution-a case study from Turkey. Part 1: Determination of Weibull Parameters, Energy Sources Part B, Cilt. 4, No.1, 2009, s.1–8.
  • Fazelpour F, Soltani N, Soltani S, Rosen MA. Assessment of wind energy potential and economics in the north-western iranian cities of Tabriz and Ardabil, Renewable and Sustainable Energy Reviews, Cilt. 5, 2015, s. 87–99.
  • Islam MR, Saidur R, Rahim NA. Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function, Energy, Cilt. 36, No. 2, 2011, s.985–92.
  • Ouammi A, Dagdougui H, Sacile R, Mimet A. Monthly and seasonal assessment of wind energy characteristics at four monitored locations in Liguria region (Italy), Renewable and Sustainable Energy Reviews, Cilt. 14, No. 7, 2010, s.1959–1968.
  • Safari B, Gasore J. A statistical investigation of wind characteristics and wind energy potential based on the Weibull and Rayleigh models in Rwanda, Renewable Energy, Cilt. 35, No. 12, 2010, s.2874–80.
  • Kantar YM, Senoglu B. A comparative study for the location and scale parameters of the Weibull distribution with given shape parameter, Computers&Geosciences, Cilt. 34, 2008, 1900–9.
  • Yavuz AA. Estimation of the Shape Parameter of the Weibull Distribution Using Linear Regression Methods: Non-Censored Samples, Quality and Reliability Engineering International, Cilt. 29, No. 8, 2013, s.1207–1219.
  • Arslan T, Bulut YM, Yavuz AA. Comparative study of numerical methods for determining Weibull parameters for wind energy potential, Renewable and Sustainable Energy Reviews, Cilt. 40, 2014, s. 820–25.
  • Akdag S, Dinler A. A novel energy pattern factor method for wind speed distribution parameter estimation. Energy Conversion and Management Cilt. 106, 2015, s.1124–1133.
  • Kantar YM, Usta I., Acitas. A Monte Carlo Simulation Study on Partially Adaptive Estimators of Linear Regression Models, Journal of Applied Statistics, Cilt. 38, 2011, s. 1681-1699.
  • Kantar YM, Usta İ, Yenilmez İ, Arik İ. Comparison of some estimation methods of the two parameter Weibull distribution for unusual wind speed data cases, Bilişim Teknolojileri Dergisi, Cilt. 9, No. 2, 2016, s.81-89.
  • Usta I. Different estimation methods for the parameters of the extended Burr XII distribution. Journal of Applied Statistics, Cilt. 40, No.2, 2013, 397–414.
  • Usta I. An innovative estimation method regarding Weibull parameters for wind energy applications. Energies, Cilt. 106, 2016, s. 301- 314.
  • Akdag SA, Bagiorgas HS, Mihalakakou G. Use of two-component Weibull mixtures in the analysis of wind speed in the Eastern Mediterranean, Applied Energy, Cilt. 87, No. 8, 2010, s.2566–73.
  • Chang TP. Estimation of wind energy potential using different probability density functions, Applied Energy, Cilt. 88, No. 5, 2011, s.1848-1856.
  • Kantar YM, Usta I. Analysis of wind speed distributions: wind distribution function derived from minimum cross entropy principles as better alternative to Weibull function. Energy Conversion and Management, Cilt. 49, 2008, s. 962–73.
  • Usta I, Kantar YM. Analysis of some flexible families of distributions for estimation of wind speed distributions, Applied Energy, Cilt. 89, No.1, 2012, s. 355–67.
  • Kantar YM, Usta I. Analysis of the upper-truncated Weibull distribution for wind speed. Energy Conversion and Management, Cilt. 96, 2015, s.81–88.
  • Soukissian T. Use of multi-parameter distributions for offshore wind speed modeling: The Johnson SB distribution, Applied Energy, Cilt. 111, 2013, s.982–1000
  • Ozgur MA, Arslan O, Kose R, Peker KO. Statistical Evaluation of Wind Characteristics in Kütahya, Turkey, Energy Sources Part A-Recovery Utilization and Environmental Effects, Cilt. 31, No. 16, 2009, s.1450-1463.
  • Morgan EC, Matthew L, Vogel RM, Baise LG. Probability distributions for offshore wind speeds, Energy Conversion and Management, Cilt. 52, No.1, 2011, s.15–26.
  • Morgan VT. Statistical distributions of wind parameters at Sydney, Australia, Renewable Energy, Cilt. 6, No. 1, 1995, s.39–47.
  • Kantar YM, Usta İ, Yenilmez İ, Arik İ. A Study on estimation of wind speed distribution by using the Modified Weibull distribution, Bilişim Teknolojileri Dergisi, Cilt. 9, No. 2, 2016, s.63-70
  • İmal M., Şekkeli M., Yıldız C. (2012). Kahramanmaran Sütçü İmam Üniversitesi Ana kampüste rüzgar enerji potansiyeli araştırması ve değerlendirmesi, KSU Mühendislik Bilimleri Dergisi, Cilt.15, No. 2, 2012.
  • Khodabina M., Ahmadabadib A., Some properties of generalized gamma distribution, Mathematical Sciences, Cilt. 4, No. 1, 2010, s. 9-28.
  • Kolar R., Jan RJ. Estimator Comparison of the Nakagami-m parameter and its application in echocardiography, Radioengineering, Cilt. 13, No. 1, 2004.
  • Rüzgar Enerjisine Dayalı Lisans Başvurularının Teknik Değerlendirilmesi Hakkında Yönetmelik, Tarihi: 07.11.2015. Erişim
There are 33 citations in total.

Details

Other ID JA34KU88TJ
Journal Section Research Article
Authors

İlhan Usta This is me

Yeliz Mert Kantar This is me

Publication Date September 1, 2016
Published in Issue Year 2016 Volume: 18 Issue: 54

Cite

APA Usta, İ., & Mert Kantar, Y. (2016). FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(54), 362-380.
AMA Usta İ, Mert Kantar Y. FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ. DEUFMD. September 2016;18(54):362-380.
Chicago Usta, İlhan, and Yeliz Mert Kantar. “FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, no. 54 (September 2016): 362-80.
EndNote Usta İ, Mert Kantar Y (September 1, 2016) FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 54 362–380.
IEEE İ. Usta and Y. Mert Kantar, “FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ”, DEUFMD, vol. 18, no. 54, pp. 362–380, 2016.
ISNAD Usta, İlhan - Mert Kantar, Yeliz. “FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/54 (September 2016), 362-380.
JAMA Usta İ, Mert Kantar Y. FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ. DEUFMD. 2016;18:362–380.
MLA Usta, İlhan and Yeliz Mert Kantar. “FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 18, no. 54, 2016, pp. 362-80.
Vancouver Usta İ, Mert Kantar Y. FARKLI OLASILIK YOĞUNLUK FONKSİYONLARI KULLANARAK RÜZGAR GÜCÜ POTANSİYELİNİN TAHMİNİ. DEUFMD. 2016;18(54):362-80.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.