BibTex RIS Cite

THERMAL ENERGY STORAGE WITH PHASE CHANGE IN CYLINDRICAL COORDINATES: ONE DIMENSIONAL NUMERICAL INVESTIGATION

Year 2016, Volume: 18 Issue: 53, 178 - 191, 01.05.2016

Abstract

In this study, a one-dimensional mathematical model is developed for a latent heat thermal energy storage system that is designed as a shell-and-tube heat exchanger. In order to reveal the validity of the model, comparisons are conducted with a simplified analytical solution. Time-wise variation of interface position and the local temperature distributions are obtained for various heat transfer fluid temperatures and pipe materials. As a result, it is obtained that the performance of the heat storage system considerably reduces by using pipe materials with lower thermal conductivity, such as PE-32

References

  • Seddegh S, Wang X, Henderson AD. A Comparative Study of Thermal Behavior of a Horizontal and Vertical Shell-and-Tube Energy Storage Using Phase Change Materials, Applied Thermal Engineering, Cilt. 93, 2016, s.348-358.
  • Christenson MS, Incropera FP. Solidification of an Aqueous Ammonium Chloride Solution in a Rectangular Cavity—I. Experimental Study, International Journal of Heat and Mass Transfer, Cilt. 32, No. 1, 1989, s.47–68,
  • Webb BW, Moallemi MK, Viskanta R. Experiments on Melting of Unfixed Ice in a Horizontal Cylindrical Capsule, Journal of Heat Transfer, Cilt. 109, No. 2, 1987, s.454–459.
  • Medrano M, Yılmaz MO, Nogués M, Martorell I, Roca J , Cabeza LF. Experimental Evaluation of Commercial Heat Exchangers for use as PCM Thermal Storage Systems, Applied Energy, Cilt. 86, No. 10, 2009, s.2047–2055.
  • Erek A, I. Dinçer I. An Approach to Entropy Analysis of a Latent Heat Storage Module, International Journal of Thermal Sciences, Cilt. 47, 2008, s.1077–1085.
  • Habeebullah BA. An Experimental Study on Ice Formation Around Horizontal Long Tubes, International Journal of Refrigeration, Cilt. 30, No. 5, 2007, s.789–797.
  • Wang WW, Wang LB, He YL. Parameter Effect of a Phase Change Thermal Energy Storage Unit with One Shell and One Finned Tube on its Energy Efficiency Ratio and Heat Storage Rate, Applied Thermal Engineering, Cilt. 93, 2016, s.50-60.
  • Erek A, Ezan MA. Experimental and Numerical Study on Charging Processes of an Ice-on-Coil Thermal Energy Storage System, International Journal of Energy Research, Cilt. 31, No. 2, 2007, s.158–176.
  • Li YQ, He YL, Song HJ, Xu C, Wang WW, Numerical Analysis and Parameters Optimization of shell-and-Tube Heat Storage Unit Using Three Phase Change Materials, Renewable Energy, Cilt59, 2013, s.92-99.
  • Trp A. An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit, Solar Energy, Cilt. 79, No. 6, 2005, s.648–660.
  • Erek A, Ilken Z, Acar MA. Experimental and Numerical Investigation of Thermal Energy Storage with a Finned Tube, International Journal of Energy Research., Cilt. 29, No. 4, 2005, s.283–301.
  • Lacroix M. Numerical Simulation of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit, Solar Energy, Cilt. 50, No. 4, 1993, s.357–367.
  • Abhat A. Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials, Solar Energy, Cilt. 30, No. 4, 1983, s.313–332.
  • Agyenim F, Hewitt N, Eames P, Smyth M. A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS), Renewable and Sustainable Energy Reviews, Cilt. 14, No. 2, 2010, s.615– 628.
  • Augspurger M, Udaykumar HS, A Cartesian Grid Solver for Simulation of a Phase- Change Material (PCM) Solar Thermal Storage Device, Numerical Heat Transfer, Part B: Fundamentals, Cilt. 69, No. 3, 2016, s.1-18.
  • Fan LW, Zhu ZQ, Zeng Y, Ding Q, Liu MJ, Unconstrained Melting Heat Transfer in a Spherical Container Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM), International Journal of Heat and Mass Transfer, Cilt. 95, 2016, s.1057-1069.
  • Voller VR, Swaminathan CR, Thomas BG. Fixed Grid Techniques for Phase Change Problems: A Review, International Journal of Numerical Methods in Engineering, Cilt. 30, No. 4, 1990, s.875–898.
  • Lacroix M, Voller VR. Finite Difference Solutions of Solidification Phase Change Problems: Transformed Versus Fixed Grids, Numerical Heat Transfer Part B: Fundamentals: An International Journal of Computation and Methodology, Cilt. 17, No. 1, 1990, s.25–41.
  • Cao Y, Faghri A. A Numerical Analysis of Phase-Change Problems Including Natural Convection, Journal of Heat Transfer, Cilt. 112, No. 3, 1990, s.812–816.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow, Series in computational methods in mechanics and thermal sciences, 1980, s.1–197.
  • M. N. Özışık, Heat conduction, John Wiley & Sons, 1993.

SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME

Year 2016, Volume: 18 Issue: 53, 178 - 191, 01.05.2016

Abstract

Bu çalışmada, boru-kovan tipi bir ısı değiştiricisi şeklinde tasarlanan faz değişimli gizli ısıl enerji depolama sistemi için bir-boyutlu matematiksel bir model oluşturulmuştur. Modelin doğruluğunu kontrol etmek için basitleştirilmiş analitik çözüm ile karşılaştırmalar gerçekleştirilmiştir. Değişen ısı transfer akışkanı sıcaklığı ve boru malzemeleri için zamana bağlı ara-yüzey ilerlemeleri ve yerel sıcaklık dağılımları elde edilmiştir. Sonuç olarak, PE-32 gibi düşük ısı iletim katsayısına sahip boru malzemelerinin kullanılması durumunda depolanan enerji miktarının önemli ölçüde azaldığı belirlenmiştir

References

  • Seddegh S, Wang X, Henderson AD. A Comparative Study of Thermal Behavior of a Horizontal and Vertical Shell-and-Tube Energy Storage Using Phase Change Materials, Applied Thermal Engineering, Cilt. 93, 2016, s.348-358.
  • Christenson MS, Incropera FP. Solidification of an Aqueous Ammonium Chloride Solution in a Rectangular Cavity—I. Experimental Study, International Journal of Heat and Mass Transfer, Cilt. 32, No. 1, 1989, s.47–68,
  • Webb BW, Moallemi MK, Viskanta R. Experiments on Melting of Unfixed Ice in a Horizontal Cylindrical Capsule, Journal of Heat Transfer, Cilt. 109, No. 2, 1987, s.454–459.
  • Medrano M, Yılmaz MO, Nogués M, Martorell I, Roca J , Cabeza LF. Experimental Evaluation of Commercial Heat Exchangers for use as PCM Thermal Storage Systems, Applied Energy, Cilt. 86, No. 10, 2009, s.2047–2055.
  • Erek A, I. Dinçer I. An Approach to Entropy Analysis of a Latent Heat Storage Module, International Journal of Thermal Sciences, Cilt. 47, 2008, s.1077–1085.
  • Habeebullah BA. An Experimental Study on Ice Formation Around Horizontal Long Tubes, International Journal of Refrigeration, Cilt. 30, No. 5, 2007, s.789–797.
  • Wang WW, Wang LB, He YL. Parameter Effect of a Phase Change Thermal Energy Storage Unit with One Shell and One Finned Tube on its Energy Efficiency Ratio and Heat Storage Rate, Applied Thermal Engineering, Cilt. 93, 2016, s.50-60.
  • Erek A, Ezan MA. Experimental and Numerical Study on Charging Processes of an Ice-on-Coil Thermal Energy Storage System, International Journal of Energy Research, Cilt. 31, No. 2, 2007, s.158–176.
  • Li YQ, He YL, Song HJ, Xu C, Wang WW, Numerical Analysis and Parameters Optimization of shell-and-Tube Heat Storage Unit Using Three Phase Change Materials, Renewable Energy, Cilt59, 2013, s.92-99.
  • Trp A. An Experimental and Numerical Investigation of Heat Transfer During Technical Grade Paraffin Melting and Solidification in a Shell-and-Tube Latent Thermal Energy Storage Unit, Solar Energy, Cilt. 79, No. 6, 2005, s.648–660.
  • Erek A, Ilken Z, Acar MA. Experimental and Numerical Investigation of Thermal Energy Storage with a Finned Tube, International Journal of Energy Research., Cilt. 29, No. 4, 2005, s.283–301.
  • Lacroix M. Numerical Simulation of a Shell-and-Tube Latent Heat Thermal Energy Storage Unit, Solar Energy, Cilt. 50, No. 4, 1993, s.357–367.
  • Abhat A. Low Temperature Latent Heat Thermal Energy Storage: Heat Storage Materials, Solar Energy, Cilt. 30, No. 4, 1983, s.313–332.
  • Agyenim F, Hewitt N, Eames P, Smyth M. A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS), Renewable and Sustainable Energy Reviews, Cilt. 14, No. 2, 2010, s.615– 628.
  • Augspurger M, Udaykumar HS, A Cartesian Grid Solver for Simulation of a Phase- Change Material (PCM) Solar Thermal Storage Device, Numerical Heat Transfer, Part B: Fundamentals, Cilt. 69, No. 3, 2016, s.1-18.
  • Fan LW, Zhu ZQ, Zeng Y, Ding Q, Liu MJ, Unconstrained Melting Heat Transfer in a Spherical Container Revisited in the Presence of Nano-Enhanced Phase Change Materials (NePCM), International Journal of Heat and Mass Transfer, Cilt. 95, 2016, s.1057-1069.
  • Voller VR, Swaminathan CR, Thomas BG. Fixed Grid Techniques for Phase Change Problems: A Review, International Journal of Numerical Methods in Engineering, Cilt. 30, No. 4, 1990, s.875–898.
  • Lacroix M, Voller VR. Finite Difference Solutions of Solidification Phase Change Problems: Transformed Versus Fixed Grids, Numerical Heat Transfer Part B: Fundamentals: An International Journal of Computation and Methodology, Cilt. 17, No. 1, 1990, s.25–41.
  • Cao Y, Faghri A. A Numerical Analysis of Phase-Change Problems Including Natural Convection, Journal of Heat Transfer, Cilt. 112, No. 3, 1990, s.812–816.
  • S. Patankar, Numerical Heat Transfer and Fluid Flow, Series in computational methods in mechanics and thermal sciences, 1980, s.1–197.
  • M. N. Özışık, Heat conduction, John Wiley & Sons, 1993.
There are 21 citations in total.

Details

Other ID JA63BY56HY
Journal Section Research Article
Authors

Muhammet Özdoğan This is me

Mehmet Akif Ezan This is me

Aytunç Erek This is me

Publication Date May 1, 2016
Published in Issue Year 2016 Volume: 18 Issue: 53

Cite

APA Özdoğan, M., Ezan, M. A., & Erek, A. (2016). SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(53), 178-191.
AMA Özdoğan M, Ezan MA, Erek A. SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME. DEUFMD. May 2016;18(53):178-191.
Chicago Özdoğan, Muhammet, Mehmet Akif Ezan, and Aytunç Erek. “SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, no. 53 (May 2016): 178-91.
EndNote Özdoğan M, Ezan MA, Erek A (May 1, 2016) SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 53 178–191.
IEEE M. Özdoğan, M. A. Ezan, and A. Erek, “SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME”, DEUFMD, vol. 18, no. 53, pp. 178–191, 2016.
ISNAD Özdoğan, Muhammet et al. “SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/53 (May 2016), 178-191.
JAMA Özdoğan M, Ezan MA, Erek A. SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME. DEUFMD. 2016;18:178–191.
MLA Özdoğan, Muhammet et al. “SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 18, no. 53, 2016, pp. 178-91.
Vancouver Özdoğan M, Ezan MA, Erek A. SİLİNDİRİK KOORDİNATLARDA FAZ DEĞİŞİMLİ ISIL ENERJİ DEPOLAMA: BİR BOYUTLU SAYISAL İNCELEME. DEUFMD. 2016;18(53):178-91.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.