BibTex RIS Cite

COMPARISON OF MICROTISSUE FORMING CAPACITY OF SH-SY5Y AND SK-N-AS CELL LINES

Year 2016, Volume: 18 Issue: 52, 40 - 48, 01.01.2016

Abstract

Two-dimensional (2D) cell culture systems are important tools for basic in vitro research. However, they form a thin monolayer structure and poorly mimic the complex in vivo conditions in terms of biochemical signals, cell-cell and cell- extracellular matrix (ECM) interactions. In this study, we performed a comparative study on SH-SY5Y and SK-N-AS neuroblastoma cell lines in terms of their microtissue forming capacity. Both cell lines are commonly used to model neurodegenerative diseases in vitro. Cells were cultured using 3D Petri Dish technique. The cells’ microtissue forming capacity was observed morphologically and microtissues’ size was analized. Results indicate that microtissue forming capacity of SH-SY5Ycell line was better than that of SK-N-AS cell line. SH-SY5Y microtissues can be used as an alternative, scaffold-free in vitro 3D model for neurodegenerative diseases and neuroblastoma research

References

  • LaPlaca MC, Shoemaker JT, Cullen DK. Three-dimensional Neuronal Cultures, Methods in Bioengineering: 3d Tissue Engineering, Artech House, 2010, pp.187-204.
  • Asthana A, Kisaalita WS. Biophysical Microenvironment and 3d Culture Physiological Relevance, Drug Discov Today, Vol. 18, No. 11-12, 2013, pp.533-540.
  • Justice BA, Badr NA, Felder RA, 3d Cell Culture Opens New Dimensions in Cell-Based Assays, Drug Discov Today, Vol. 14, No. 1-2, 2009, pp.102-107.
  • Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular Tumor Spheroids: An Underestimated Tool is Catching Up Again, J Biotechnol, Vol. 148, No. 1, 2010, pp.3-15.
  • Chitcholtan K, Asselin E, Parent S, Sykes HP, Evans JJ. Differences in Growth Properties of Endometrial Cancer in Three Dimensional (3d) Cculture and 2d Cell Monolayer, Exp Cell Res, Vol. 319, No. 1, 2013, pp.75-87.
  • Hakanson M, Cukierman E, Charnley M. Miniaturized Pre-Clinical Cancer Models As Research and Diagnostic Tools, Adv Drug Deliv Rev, Vol. 69-70, 2014, pp.52-66.
  • Penick KJ, Solchaga LA, Welter JF. High-Throughput Aggregate Culture System to Assess the Chondrogenic Potential of Mesenchymal Stem Cells, Biotechniques, Vol. 39, No. 5, 2005, pp.687-691.
  • Bhadriraju K, Chen CS. Engineering Cellular Microenvironments to Improve Cell-Based Drug Testing, Drug Discov Today, Vol. 7, No. 11, 2002, pp.612-620.
  • Drewitz M, Helbling M, Fried N, Bieri M, Moritz W, Lichtenberg J, Kelm JM. Towards Automated Production and Drug Sensitivity Testing Using Scaffold-Free Spherical Tumor Microtissues, Biotechnol J, Vol. 6, No. 12, 2011, pp.1488-1496.
  • Breslin S, O'Driscoll L. Three-Dimensional Cell Culture: The Missing Link in Drug Discovery, Drug Discov Today, Vol. 18, No. 5-6, 2013, pp.240-249.
  • Berg EL, Kunkel EJ, Hytopoulos E. Biological Complexity and Drug Discovery: A Practical Systems Biology Approach, Syst Biol (Stevenage), Vol. 152, No. 4, 2005, pp.201-206.
  • Kelm JM, Fussenegger M. Microscale Tissue Engineering Using Gravity-Enforced Cell Assembly, Trends Biotechnol, Vol. 22, No. 4, 2004, pp.195-202.
  • Kelm JM, Djonov V, Ittner LM, Fluri D, Born W, Hoerstrup SP, Fussenegger M. Design of Custom-Shaped Vascularized Tissues Using Microtissue Spheroids as Minimal Building Units, Tissue Engineering, Vol. 12, No. 8, 2006, pp.2151-2160.
  • Haycock JW. 3d Cell Culture: A Review of Current Approaches and Techniques, Methods Mol Biol, Vol. 695, 2011, pp.1-15.
  • Achilli TM, Meyer J, Morgan JR. Advances in The Formation, Use and Understanding of Multi-Cellular Spheroids, Expert Opin Biol Ther, Vol. 12, No. 10, 2012, 1347-1360.
  • Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R, The Use of 3-d Cultures for High-Throughput Screening: The Multicellular Spheroid Model, J Biomol Screen, Vol. 9, No. 4, 2004, pp.273-285.
  • Napolitano AP, Dean DM, Man AJ, Youssef J, Ho DN, Rago AP, Lech MP, Morgan JR. Scaffold-Free Three-Dimensional Cell Culture Utilizing Micromolded Nonadhesive Hydrogels, Biotechniques, Vol. 43, No. 4, 2007, pp.494, 496-500.
  • Ebrahimkhani MR, Young CL, Lauffenburger DA, Griffith LG, Borenstein JT. Approaches to in Vitro Tissue Regeneration with Application for Human Disease Modeling and Drug Development, Drug Discov Today, Vol. 19, No. 6, 2014, pp.754-762.
  • Choudhury D, Mo X, Iliescu C, Tan LL, Tong WH, Yu H. Exploitation of Physical and Chemical Constraints For Three-Dimensional Microtissue Construction in Microfluidics, Biomicrofluidics, Vol. 5, No. 2, 2011.
  • Desroches BR, Zhang P, Choi BR, King ME, Maldonado AE, Li W, Rago A, Liu G, Nath N, Hartmann KM, Yang B, Koren G, Morgan JR, Mende U. Functional Scaffold- Free 3-D Cardiac Microtissues: A Novel Model for the Investigation of Heart Cells, Am J Physiol Heart Circ Physiol, Vol. 302, No. 10, 2012, pp.2031-2042.
  • Dissanayaka W, Zhu L, Hargreaves K, Jin L, Zhang C. Scaffold-Free Prevascularized Microtissue Spheroids for Pulp Regeneration, J Dent Res, Vol. 93, No. 12, 2014, pp.1296-1303.
  • Microtissues Inc. [http://www.microtissues.com/] Access to Date: 02.02.2016.
  • Lopes FM, Schroder R, da Frota ML Jr, Zanotto-Filho A, Muller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JC, Fernandes Mda C, Klamt F. Comparison between Proliferative and Neuron-Like Sh-Sy5y Cells as an in Vitro Model for Parkinson Disease Studies, Brain Res, Vol. 1337, 2010, pp.85-94.
  • Harvey H, Piskareva O, Creevey L, Alcock LC, Buckley PG, O'Sullivan MJ, Segura MF, Gallego S, Stallings RL, Bray IM. Modulation of Chemotherapeutic Drug Resistance in Neuroblastoma Sk-N-As Cells by the Neural Apoptosis Inhibitory Protein and Mir-520f, Int J Cancer, Vol. 136, No. 7, 2015, pp.1579-1588.
  • Microtissues Inc., Signs exclusive license with Brown University, 2015, [http://www.microtissues.com/mt-pr-microtissues-signs-license-with-brown- university.htm] Access to Date: 02.02.2016. [26] Sh-sy5y
  • (atcc® crl-2266™), [http://www.lgcstandards-atcc.org/products/all/CRL aspx?geo_country=tr#characteristics] Access to Date: 07.10.2015. [27] Sk-n-as (atcc® crl-2137™), aspx?geo_country=tr] Access to Date: 04.10.2015.
  • http://www.lgcstandards-atcc.org/products/all/CRL
  • Kumar HR, Zhong X, Hoelz DJ, Rescorla FJ, Hickey RJ, Malkas LH, Sandoval JA, Three-Dimensional Neuroblastoma Cell Culture: Proteomic Analysis between Monolayer and Multicellular Tumor Spheroids, Pediatr Surg Int, Vol. 24, No. 11, 2008, pp.1229- 1234.
  • Öztürk S. The Effects of Cancer Stem Cells on Forming and Organiation of Microtissue, Master Thesis, İzmir: Ege University, Graduate School of Natural and Applied Science, Biomedical Technologies Department, 2014.

SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI

Year 2016, Volume: 18 Issue: 52, 40 - 48, 01.01.2016

Abstract

İki boyutlu (2B) hücre kültür sistemleri temel in vitro araştırmalar için önemli araçlar olmasına rağmen, biyokimyasal sinyal iletimi, hücre-hücre ve hücre-matris etkileşimleri gibi kompleks koşulları taklit ederken, in vivo modellere göre zayıf kalmaktadır. Bu çalışmada, in vitro nörodejeneratif hastalık model hücreleri olarak sıklıkla kullanılan SH-SY5Y ve SK-N-AS nöroblastom hücre hatlarının, 3D Petri Dish® tekniği ile mikrodoku oluşturma kapasiteleri karşılaştırılmış olup, mikrodokuların morfolojileri gözlemlenmiş ve boyut analizleri gerçekleştirilmiştir. Sonuç olarak, SHSY5Y mikrodokularının nörodejeneratif hastalıklar ve nöroblastoma çalışmaları için alternatif bir 3B model olabileceği belirlenmiştir

References

  • LaPlaca MC, Shoemaker JT, Cullen DK. Three-dimensional Neuronal Cultures, Methods in Bioengineering: 3d Tissue Engineering, Artech House, 2010, pp.187-204.
  • Asthana A, Kisaalita WS. Biophysical Microenvironment and 3d Culture Physiological Relevance, Drug Discov Today, Vol. 18, No. 11-12, 2013, pp.533-540.
  • Justice BA, Badr NA, Felder RA, 3d Cell Culture Opens New Dimensions in Cell-Based Assays, Drug Discov Today, Vol. 14, No. 1-2, 2009, pp.102-107.
  • Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular Tumor Spheroids: An Underestimated Tool is Catching Up Again, J Biotechnol, Vol. 148, No. 1, 2010, pp.3-15.
  • Chitcholtan K, Asselin E, Parent S, Sykes HP, Evans JJ. Differences in Growth Properties of Endometrial Cancer in Three Dimensional (3d) Cculture and 2d Cell Monolayer, Exp Cell Res, Vol. 319, No. 1, 2013, pp.75-87.
  • Hakanson M, Cukierman E, Charnley M. Miniaturized Pre-Clinical Cancer Models As Research and Diagnostic Tools, Adv Drug Deliv Rev, Vol. 69-70, 2014, pp.52-66.
  • Penick KJ, Solchaga LA, Welter JF. High-Throughput Aggregate Culture System to Assess the Chondrogenic Potential of Mesenchymal Stem Cells, Biotechniques, Vol. 39, No. 5, 2005, pp.687-691.
  • Bhadriraju K, Chen CS. Engineering Cellular Microenvironments to Improve Cell-Based Drug Testing, Drug Discov Today, Vol. 7, No. 11, 2002, pp.612-620.
  • Drewitz M, Helbling M, Fried N, Bieri M, Moritz W, Lichtenberg J, Kelm JM. Towards Automated Production and Drug Sensitivity Testing Using Scaffold-Free Spherical Tumor Microtissues, Biotechnol J, Vol. 6, No. 12, 2011, pp.1488-1496.
  • Breslin S, O'Driscoll L. Three-Dimensional Cell Culture: The Missing Link in Drug Discovery, Drug Discov Today, Vol. 18, No. 5-6, 2013, pp.240-249.
  • Berg EL, Kunkel EJ, Hytopoulos E. Biological Complexity and Drug Discovery: A Practical Systems Biology Approach, Syst Biol (Stevenage), Vol. 152, No. 4, 2005, pp.201-206.
  • Kelm JM, Fussenegger M. Microscale Tissue Engineering Using Gravity-Enforced Cell Assembly, Trends Biotechnol, Vol. 22, No. 4, 2004, pp.195-202.
  • Kelm JM, Djonov V, Ittner LM, Fluri D, Born W, Hoerstrup SP, Fussenegger M. Design of Custom-Shaped Vascularized Tissues Using Microtissue Spheroids as Minimal Building Units, Tissue Engineering, Vol. 12, No. 8, 2006, pp.2151-2160.
  • Haycock JW. 3d Cell Culture: A Review of Current Approaches and Techniques, Methods Mol Biol, Vol. 695, 2011, pp.1-15.
  • Achilli TM, Meyer J, Morgan JR. Advances in The Formation, Use and Understanding of Multi-Cellular Spheroids, Expert Opin Biol Ther, Vol. 12, No. 10, 2012, 1347-1360.
  • Kunz-Schughart LA, Freyer JP, Hofstaedter F, Ebner R, The Use of 3-d Cultures for High-Throughput Screening: The Multicellular Spheroid Model, J Biomol Screen, Vol. 9, No. 4, 2004, pp.273-285.
  • Napolitano AP, Dean DM, Man AJ, Youssef J, Ho DN, Rago AP, Lech MP, Morgan JR. Scaffold-Free Three-Dimensional Cell Culture Utilizing Micromolded Nonadhesive Hydrogels, Biotechniques, Vol. 43, No. 4, 2007, pp.494, 496-500.
  • Ebrahimkhani MR, Young CL, Lauffenburger DA, Griffith LG, Borenstein JT. Approaches to in Vitro Tissue Regeneration with Application for Human Disease Modeling and Drug Development, Drug Discov Today, Vol. 19, No. 6, 2014, pp.754-762.
  • Choudhury D, Mo X, Iliescu C, Tan LL, Tong WH, Yu H. Exploitation of Physical and Chemical Constraints For Three-Dimensional Microtissue Construction in Microfluidics, Biomicrofluidics, Vol. 5, No. 2, 2011.
  • Desroches BR, Zhang P, Choi BR, King ME, Maldonado AE, Li W, Rago A, Liu G, Nath N, Hartmann KM, Yang B, Koren G, Morgan JR, Mende U. Functional Scaffold- Free 3-D Cardiac Microtissues: A Novel Model for the Investigation of Heart Cells, Am J Physiol Heart Circ Physiol, Vol. 302, No. 10, 2012, pp.2031-2042.
  • Dissanayaka W, Zhu L, Hargreaves K, Jin L, Zhang C. Scaffold-Free Prevascularized Microtissue Spheroids for Pulp Regeneration, J Dent Res, Vol. 93, No. 12, 2014, pp.1296-1303.
  • Microtissues Inc. [http://www.microtissues.com/] Access to Date: 02.02.2016.
  • Lopes FM, Schroder R, da Frota ML Jr, Zanotto-Filho A, Muller CB, Pires AS, Meurer RT, Colpo GD, Gelain DP, Kapczinski F, Moreira JC, Fernandes Mda C, Klamt F. Comparison between Proliferative and Neuron-Like Sh-Sy5y Cells as an in Vitro Model for Parkinson Disease Studies, Brain Res, Vol. 1337, 2010, pp.85-94.
  • Harvey H, Piskareva O, Creevey L, Alcock LC, Buckley PG, O'Sullivan MJ, Segura MF, Gallego S, Stallings RL, Bray IM. Modulation of Chemotherapeutic Drug Resistance in Neuroblastoma Sk-N-As Cells by the Neural Apoptosis Inhibitory Protein and Mir-520f, Int J Cancer, Vol. 136, No. 7, 2015, pp.1579-1588.
  • Microtissues Inc., Signs exclusive license with Brown University, 2015, [http://www.microtissues.com/mt-pr-microtissues-signs-license-with-brown- university.htm] Access to Date: 02.02.2016. [26] Sh-sy5y
  • (atcc® crl-2266™), [http://www.lgcstandards-atcc.org/products/all/CRL aspx?geo_country=tr#characteristics] Access to Date: 07.10.2015. [27] Sk-n-as (atcc® crl-2137™), aspx?geo_country=tr] Access to Date: 04.10.2015.
  • http://www.lgcstandards-atcc.org/products/all/CRL
  • Kumar HR, Zhong X, Hoelz DJ, Rescorla FJ, Hickey RJ, Malkas LH, Sandoval JA, Three-Dimensional Neuroblastoma Cell Culture: Proteomic Analysis between Monolayer and Multicellular Tumor Spheroids, Pediatr Surg Int, Vol. 24, No. 11, 2008, pp.1229- 1234.
  • Öztürk S. The Effects of Cancer Stem Cells on Forming and Organiation of Microtissue, Master Thesis, İzmir: Ege University, Graduate School of Natural and Applied Science, Biomedical Technologies Department, 2014.
There are 29 citations in total.

Details

Other ID JA78FH25PD
Journal Section Research Article
Authors

Aslı Aybike Doğan This is me

Şeyma Taşdemir This is me

Aylin Şendemir Ürkmez This is me

Publication Date January 1, 2016
Published in Issue Year 2016 Volume: 18 Issue: 52

Cite

APA Doğan, A. A., Taşdemir, Ş., & Ürkmez, A. Ş. (2016). SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 18(52), 40-48.
AMA Doğan AA, Taşdemir Ş, Ürkmez AŞ. SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI. DEUFMD. January 2016;18(52):40-48.
Chicago Doğan, Aslı Aybike, Şeyma Taşdemir, and Aylin Şendemir Ürkmez. “SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 18, no. 52 (January 2016): 40-48.
EndNote Doğan AA, Taşdemir Ş, Ürkmez AŞ (January 1, 2016) SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18 52 40–48.
IEEE A. A. Doğan, Ş. Taşdemir, and A. Ş. Ürkmez, “SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI”, DEUFMD, vol. 18, no. 52, pp. 40–48, 2016.
ISNAD Doğan, Aslı Aybike et al. “SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 18/52 (January 2016), 40-48.
JAMA Doğan AA, Taşdemir Ş, Ürkmez AŞ. SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI. DEUFMD. 2016;18:40–48.
MLA Doğan, Aslı Aybike et al. “SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 18, no. 52, 2016, pp. 40-48.
Vancouver Doğan AA, Taşdemir Ş, Ürkmez AŞ. SH-SY5Y VE SK-N-AS HÜCRE HATLARININ MİKRODOKU OLUŞTURMA KAPASİTELERİNİN KARŞILAŞTIRILMASI. DEUFMD. 2016;18(52):40-8.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.