Pattern recognition based prosthesis hand control algorithms have largely been used to produce artificial hand for handicapped people. This paper was investigated four classifiers (linear discriminant analysis, k-nearest neighbor, nearest neighbor and k-means) for multi-functional (six forearm movement: hand open, hand close, wrist flexion, wrist extension, ulnar deviation, and radial deviation) hand control by using EMG signals from forearm muscles. In training and testing of classifiers, EMG signal based RMS, variance, wavelet-based entropy, and zero-crossing rate features were used. As a result, linear discriminant analysis classifier has shown maximum accuracy for all subjects (%94,68 ± 3,96) and movements (%94,68 ± 3,58)
Örüntü tanıma tabanlı el kontrol algoritmaları, özürlü kişiler için yapay el üretmek amacı ile kullanılmaktadır. Bu çalışmada; önkol kaslarındaki EMG (ElektroMiyoGrafi) işaretlerini kullanarak, çok işlevli (altı önkol hareketi: el açık, el kapalı, bileği bükme, bilek uzatma, dirsek sapma ve açısal sapma) el kontrolü için dört sınıflandırıcı (doğrusal ayrım analizi, k-en yakın komşuluğu, en yakın komşuluk ve k-ortalama) incelenmiştir. Sınıflandırıcıların eğitim ve testinde, EMG işareti tabanlı etkin değer, varyans, dalgacık tabanlı entropi ve sıfır geçiş oranı öznitelikleri kullanılmıştır. Sonuç olarak, doğrusal ayırma analizi sınıflandırıcısı tüm denekler (%94,68 ± 3,96) ve hareketler (%94,68 ± 3,58) için en fazla doğruluk göstermiştir
Other ID | JA25CV44AZ |
---|---|
Journal Section | Research Article |
Authors | |
Publication Date | January 1, 2015 |
Published in Issue | Year 2015 Volume: 17 Issue: 49 |
Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.