BibTex RIS Cite

DIELECTRIC SPHERICAL TARGET CLASSIFICATION USING TIME DOMAIN SCATTERING SIGNAL FEATURES AND ARTIFICIAL NEURAL NETWORKS

Year 2014, Volume: 16 Issue: 48, 104 - 108, 01.09.2014

Abstract

Solving the problem of classifying the targets, which look-alike, using electromagnetic
scattering signals, is difficult as it heavily depends on the aspect angle. For removing this
dependency, distinctive features should be extracted from the signals and they should be
processed. A target classification technique for objects having spherical shape, is proposed in
this study. A set of features is extracted from the scattered signals first. Then a classifier, based
on artificial neural networks, is designed with these features. System performance is
investigated by simulations based on dielectric spheres

References

  • Chen S. (1990): “Radar Target Identification With Relative Amplitudes and Unknown Target Aspect Angles”, IEEE Aerospace and Electronics Conference, Cilt 1.
  • Fukunaga K. (1986): “Statistical Pattern Recognition”, Hand. Of Pattern Recognition Image Processing, NY, s.3-32.
  • Haykin S. (1998): “Neural Networks: A Comprehensive Foundation”, Prentice Hall 2. Basım.
  • Reed R., Marks R. J. (1999): “Neural Smithing: Supervised Learning in Feed Forward Artificial Neural Networks”, MIT Press.
  • Seçmen M., Turhan S. G. (2009): “Radar Target Classification Method With Reduced Aspect Dependency and Improved Noise Performance Using MUSIC Algorithm”, IET Radar Sonar and Navigation, Cilt 3, No. 6, s. 583-595.
  • Silverstein P. B., Sands O. S., Garber F. D. (1991): “Radar Target Classification and Interpretation by Means of Structural Descriptions of Backscatter Signals”, Proceedings of IEEE Radar Conference, s. 21-25.
  • Turhan S. G. (2005): “Real Time Electromagnetic Target Classification Using A Novel Feature Extraction Technique With PCA Based Fusion”, IEEE Transactions on Antennas and Propagation, Cilt 53, No. 2, s.766-776.
  • Zhou D., Liu G., Wang J. (2000): “Spatio-Temporal Target Identification Method of High Range Resoulution Radar”, Pattern Recognition, Cilt 33, s.1-7.

ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI

Year 2014, Volume: 16 Issue: 48, 104 - 108, 01.09.2014

Abstract

Benzer şekilli cisimlerden saçılan elektromanyetik dalgaları kullanarak ayırt etme
probleminin çözümü, geliş açısına bağımlılıktan dolayı oldukça zordur. Bu bağımlılığı ortadan
kaldırmak için, saçılım sinyallerinden ayırıcı öznitelikler çıkarılmalı ve işlenmelidir. Bu
çalışmada, küresel geometriye sahip dielektrik hedeflerin tanınması için bir sınıflandırma
yöntemi önerilmektedir. İlk olarak saçılım sinyallerinin yapısal özellikleri kullanılarak
öznitelikler elde edilmiştir. Daha sonra bu öznitelikler ile yapay sinir ağı tabanlı bir sınıflayıcı
tasarlanmıştır. Dielektrik küreler temel alınarak yapılan benzetimler ile sistem başarımı
incelenmiştir

References

  • Chen S. (1990): “Radar Target Identification With Relative Amplitudes and Unknown Target Aspect Angles”, IEEE Aerospace and Electronics Conference, Cilt 1.
  • Fukunaga K. (1986): “Statistical Pattern Recognition”, Hand. Of Pattern Recognition Image Processing, NY, s.3-32.
  • Haykin S. (1998): “Neural Networks: A Comprehensive Foundation”, Prentice Hall 2. Basım.
  • Reed R., Marks R. J. (1999): “Neural Smithing: Supervised Learning in Feed Forward Artificial Neural Networks”, MIT Press.
  • Seçmen M., Turhan S. G. (2009): “Radar Target Classification Method With Reduced Aspect Dependency and Improved Noise Performance Using MUSIC Algorithm”, IET Radar Sonar and Navigation, Cilt 3, No. 6, s. 583-595.
  • Silverstein P. B., Sands O. S., Garber F. D. (1991): “Radar Target Classification and Interpretation by Means of Structural Descriptions of Backscatter Signals”, Proceedings of IEEE Radar Conference, s. 21-25.
  • Turhan S. G. (2005): “Real Time Electromagnetic Target Classification Using A Novel Feature Extraction Technique With PCA Based Fusion”, IEEE Transactions on Antennas and Propagation, Cilt 53, No. 2, s.766-776.
  • Zhou D., Liu G., Wang J. (2000): “Spatio-Temporal Target Identification Method of High Range Resoulution Radar”, Pattern Recognition, Cilt 33, s.1-7.
There are 8 citations in total.

Details

Other ID JA67HD67FV
Journal Section Research Article
Authors

Mehmet Mert Taygur This is me

M Alper Selver This is me

E Yeşim Zoral This is me

Publication Date September 1, 2014
Published in Issue Year 2014 Volume: 16 Issue: 48

Cite

APA Taygur, M. M., Selver, M. A., & Zoral, E. Y. (2014). ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 16(48), 104-108.
AMA Taygur MM, Selver MA, Zoral EY. ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI. DEUFMD. September 2014;16(48):104-108.
Chicago Taygur, Mehmet Mert, M Alper Selver, and E Yeşim Zoral. “ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 16, no. 48 (September 2014): 104-8.
EndNote Taygur MM, Selver MA, Zoral EY (September 1, 2014) ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 16 48 104–108.
IEEE M. M. Taygur, M. A. Selver, and E. Y. Zoral, “ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI”, DEUFMD, vol. 16, no. 48, pp. 104–108, 2014.
ISNAD Taygur, Mehmet Mert et al. “ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 16/48 (September 2014), 104-108.
JAMA Taygur MM, Selver MA, Zoral EY. ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI. DEUFMD. 2014;16:104–108.
MLA Taygur, Mehmet Mert et al. “ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 16, no. 48, 2014, pp. 104-8.
Vancouver Taygur MM, Selver MA, Zoral EY. ZAMAN BÖLGESİ SAÇILIM SİNYALLERİNİN YAPISAL ÖZNİTELİKLERİ VE YAPAY SİNİR AĞLARI KULLANILARAK DİELEKTRİK KÜRESEL HEDEFLERİN SINIFLANMASI. DEUFMD. 2014;16(48):104-8.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.