BibTex RIS Cite

NEW APPROACHES FOR CLASSIFICATION OF HYPERSPECTRAL IMAGES OF CHILI PEPPERS WITH AFLATOXINS

Year 2010, Volume: 12 Issue: 3, 17 - 33, 01.10.2010

Abstract

Many foods (such as hazelnut, pistachio nut, almond, corn, wheat, dried fig, and chili pepper) are
prone to carcinogenic aflatoxin formation during harvesting, production and storage periods.
Chemical methods are used for detection of aflatoxins give accurate results, but they are slow,
expensive and destructive. In this study, intensity histogram features of hyperspectral images of chili
peppers are extracted under halogen and ultraviolet (UV) illumination source. Salient features are
selected by using connection weights of artificial neural networks and minimum redundancy maximum
relevance techniques. With various topologies of artificial neural networks, effect of data fusion on
classification performance is investigated.

References

  • Bishop C.M. (1995): “Neural Network for Pattern Recognition”, Oxford University Press Inc., USA.
  • Bourlard H., Kamp Y. (1988): “Auto-Association by Multilayer Perceptrons and Singular Value Decomposition”, Bio. Cybernetics, Cilt 59, s. 291-294.
  • ElMasrya G., Ning Wangb C. V. (2008): “Detecting Chilling Injury In Red Delicious Apple Using Hyperspectral Imaging And Neural Networks”, Postharvest Biology and Technology, Cilt 52, s. 1-8.
  • Hamamoto Y., Uchimura S., Tomita S. (1996): “On The Behavior of Artificial Neural Network Classifiers In High-Dimensional Spaces”, IEEE Trans. on Pattern Anal. and Machine Intel, Cilt 18, No. 5, s. 571-575.
  • Hirano S., Okawara N., Narazaki S. (1998): “Near Infra Red Detection of Internally Moldy Nuts”, Bioscience, Biotechnology, and Biochemistry., cilt 62, s. 102-107.
  • Jardine D., Peter M. L. (2010): “Black Light Test for Aflatoxin Is QuestionableProcess”, http://www.ksre.ksu.edu/news/sty/2003/blacklight_test082803.htm, 17 Ocak 2010‟da kaydedilmiştir.
  • Lipps P.E., Mills D. (2010): “Where to Send Grain Samples for mycotoxin Analysis”, http://www.oardc.ohio-state.edu/ohiofieldcropdisease/wheat/mycotoxin%20text2.htm, 20 Ocak 2010‟da kaydedilmiştir.
  • Malek J. E., Alımı A. M., Tourki R. (2000): “Effect of the Feature Vector Size on the Generalization Error: The Case of MLPNN and RBFNN Classifiers”, ICPR.
  • Pearson T., Wicklow D., Maghirang E., Xie F., Dowell F. (2001): “Detecting Aflatoxin in Single Corn Kernels by Using Transmittance and Reflectance Spectroscopy”, Transactions of the ASAE, Cilt 44, No. 5, s. 1247-1254.
  • Peng H. (2005): “Feature Selection Based on Mutual Information”, IEEE Trans. on Pattern Analysis and Machine Intel, s. 1226-1238.
  • Yao H., Hruska Z., Brown R. L, Cleveland T.E. (2006): “Hyperspectral BGYF Imaging of Aflatoxin Contaminated Corn Kernels”, Proc. Of SPIE, Cilt 6381, s. 63810B.
  • Zeringue H. J., Shih B. Y. (1998) “Extraction and Separation of the BGYF Material from Aflatoxigenic Aspergillus spp. Infected Cotton Lint by HPLC-UV/FL”, J. Agric. Food Chemistry, Cilt 46, s. 1071-1075.

AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR

Year 2010, Volume: 12 Issue: 3, 17 - 33, 01.10.2010

Abstract

prone to carcinogenic aflatoxin formation during harvesting, production and storage periods. Chemical methods are used for detection of aflatoxins give accurate results, but they are slow, expensive and destructive. In this study, intensity histogram features of hyperspectral images of chili peppers are extracted under halogen and ultraviolet (UV) illumination source. Salient features are selected by using connection weights of artificial neural networks and minimum redundancy maximum relevance techniques. With various topologies of artificial neural networks, effect of data fusion on classification performance is investigated

References

  • Bishop C.M. (1995): “Neural Network for Pattern Recognition”, Oxford University Press Inc., USA.
  • Bourlard H., Kamp Y. (1988): “Auto-Association by Multilayer Perceptrons and Singular Value Decomposition”, Bio. Cybernetics, Cilt 59, s. 291-294.
  • ElMasrya G., Ning Wangb C. V. (2008): “Detecting Chilling Injury In Red Delicious Apple Using Hyperspectral Imaging And Neural Networks”, Postharvest Biology and Technology, Cilt 52, s. 1-8.
  • Hamamoto Y., Uchimura S., Tomita S. (1996): “On The Behavior of Artificial Neural Network Classifiers In High-Dimensional Spaces”, IEEE Trans. on Pattern Anal. and Machine Intel, Cilt 18, No. 5, s. 571-575.
  • Hirano S., Okawara N., Narazaki S. (1998): “Near Infra Red Detection of Internally Moldy Nuts”, Bioscience, Biotechnology, and Biochemistry., cilt 62, s. 102-107.
  • Jardine D., Peter M. L. (2010): “Black Light Test for Aflatoxin Is QuestionableProcess”, http://www.ksre.ksu.edu/news/sty/2003/blacklight_test082803.htm, 17 Ocak 2010‟da kaydedilmiştir.
  • Lipps P.E., Mills D. (2010): “Where to Send Grain Samples for mycotoxin Analysis”, http://www.oardc.ohio-state.edu/ohiofieldcropdisease/wheat/mycotoxin%20text2.htm, 20 Ocak 2010‟da kaydedilmiştir.
  • Malek J. E., Alımı A. M., Tourki R. (2000): “Effect of the Feature Vector Size on the Generalization Error: The Case of MLPNN and RBFNN Classifiers”, ICPR.
  • Pearson T., Wicklow D., Maghirang E., Xie F., Dowell F. (2001): “Detecting Aflatoxin in Single Corn Kernels by Using Transmittance and Reflectance Spectroscopy”, Transactions of the ASAE, Cilt 44, No. 5, s. 1247-1254.
  • Peng H. (2005): “Feature Selection Based on Mutual Information”, IEEE Trans. on Pattern Analysis and Machine Intel, s. 1226-1238.
  • Yao H., Hruska Z., Brown R. L, Cleveland T.E. (2006): “Hyperspectral BGYF Imaging of Aflatoxin Contaminated Corn Kernels”, Proc. Of SPIE, Cilt 6381, s. 63810B.
  • Zeringue H. J., Shih B. Y. (1998) “Extraction and Separation of the BGYF Material from Aflatoxigenic Aspergillus spp. Infected Cotton Lint by HPLC-UV/FL”, J. Agric. Food Chemistry, Cilt 46, s. 1071-1075.
There are 12 citations in total.

Details

Other ID JA62SZ72FD
Journal Section Research Article
Authors

Musa Ataş This is me

Yasemin Yardımcı This is me

Alptekin Temizel This is me

Publication Date October 1, 2010
Published in Issue Year 2010 Volume: 12 Issue: 3

Cite

APA Ataş, M., Yardımcı, Y., & Temizel, A. (2010). AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 12(3), 17-33.
AMA Ataş M, Yardımcı Y, Temizel A. AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR. DEUFMD. October 2010;12(3):17-33.
Chicago Ataş, Musa, Yasemin Yardımcı, and Alptekin Temizel. “AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 12, no. 3 (October 2010): 17-33.
EndNote Ataş M, Yardımcı Y, Temizel A (October 1, 2010) AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 12 3 17–33.
IEEE M. Ataş, Y. Yardımcı, and A. Temizel, “AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR”, DEUFMD, vol. 12, no. 3, pp. 17–33, 2010.
ISNAD Ataş, Musa et al. “AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 12/3 (October 2010), 17-33.
JAMA Ataş M, Yardımcı Y, Temizel A. AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR. DEUFMD. 2010;12:17–33.
MLA Ataş, Musa et al. “AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 12, no. 3, 2010, pp. 17-33.
Vancouver Ataş M, Yardımcı Y, Temizel A. AFLATOKSİNLİ BİBERLERİN HİPERSPEKTRAL GÖRÜNTÜLERİNİN SINIFLANDIRILMASI İÇİN YENİ YAKLAŞIMLAR. DEUFMD. 2010;12(3):17-33.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.