BibTex RIS Cite

SOLUTION OF HOMOGENEOUS DIFFERENTIAL EQUATIONS WITH ALGEBRAIC COEFFICIENT BY FINITE DIFFERENCE EQUATIONS

Year 2004, Volume: 6 Issue: 1, 129 - 138, 01.01.2004

Abstract

There is no a general method for evaluating the implicit solutions of homogeneous
differential equations since they generally have individual properties. In this study, the
implicit solutions for some types of these differential equations are obtained by using finite
difference equations. The implicit solution obtained by reducing some differential equations
with algebraic coefficient to finite difference equations with constant coefficient is also
considered and numerical examples are presented

References

  • Alku S. (1992): “A Solution of Homegeneous Differential Equations with Variable Coefficients by Finite Difference Equations”, D.E.Ü. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir.
  • Abramov S.A. (1989): “Rational Solutions of of Linear Differantial and Difference Equations with Polynomial Coefficients”, Zh.Vychisl. Mat. i Mat. Fiz. 29, no.11, 1611-1620, 1787.
  • Artzrouni M. (1987): “Conditions for Asymptotically Exponential Solutions of Linear Difference Equations with Variable Coefficients”, J. Math. Anal. Appl. 121, no.1, 160- 172.
  • Hooker J.W. (1987): “Oscillatory Second Order Linear Difference Equations and Riccati Equations”, Siam J. Math. Anal., 18, no.1, 54-63.
  • Kaczorek T. (1985): “Extension of the Method of Continuants for n-order Linear Difference Equations with Variable Coefficients”, Bull.Polish.Acad.Sci.Tech.Sci. 33, no.7-8, 395- 400.
  • Levy H., Lessman F. (1959): “Finite Difference Equations”, Sir Isaac Pitman&Sons Ltd., London.
  • Popenda J. (1987a): “Oscilation and Nonoscilation Theorems for Second Order Difference Equations”, J.Math.Anal.Appl. 123, no.1, 34-38.
  • Popenda J. (1987b): “One Expression for The Solutions of Second Order Difference Equations”, Proc.Amer.Math.Soc. 100, no.1, 87-93.
  • Tuzik A.I. (1989): “Solvability of a Discrete Equations of Convolution Type with Variable Coefficients”, Differentsial’nye Urauneniya 25, no.8, 1462-1464, 1472.

CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ

Year 2004, Volume: 6 Issue: 1, 129 - 138, 01.01.2004

Abstract

Genel olarak, değişken katsayılı homojen diferansiyel denklemler, kendine has özellikler
içerdiklerinden kapalı çözümlerinin elde edilebilmeleri için genel bir yöntem yoktur. Bu
çalışmada bu tür diferansiyel denklemlerin bazı tiplerinin kapalı çözümleri fark denklemleri
kullanılarak elde edilmiştir. Ayrıca çalışmada bazı cebirsel katsayılı diferansiyel denklemlerin
sabit katsayılı fark denklemine indirgenmesi halinde elde edilen kapalı çözümü üzerinde
durulmuş ve sayısal örnekler sunulmuştur.

References

  • Alku S. (1992): “A Solution of Homegeneous Differential Equations with Variable Coefficients by Finite Difference Equations”, D.E.Ü. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İzmir.
  • Abramov S.A. (1989): “Rational Solutions of of Linear Differantial and Difference Equations with Polynomial Coefficients”, Zh.Vychisl. Mat. i Mat. Fiz. 29, no.11, 1611-1620, 1787.
  • Artzrouni M. (1987): “Conditions for Asymptotically Exponential Solutions of Linear Difference Equations with Variable Coefficients”, J. Math. Anal. Appl. 121, no.1, 160- 172.
  • Hooker J.W. (1987): “Oscillatory Second Order Linear Difference Equations and Riccati Equations”, Siam J. Math. Anal., 18, no.1, 54-63.
  • Kaczorek T. (1985): “Extension of the Method of Continuants for n-order Linear Difference Equations with Variable Coefficients”, Bull.Polish.Acad.Sci.Tech.Sci. 33, no.7-8, 395- 400.
  • Levy H., Lessman F. (1959): “Finite Difference Equations”, Sir Isaac Pitman&Sons Ltd., London.
  • Popenda J. (1987a): “Oscilation and Nonoscilation Theorems for Second Order Difference Equations”, J.Math.Anal.Appl. 123, no.1, 34-38.
  • Popenda J. (1987b): “One Expression for The Solutions of Second Order Difference Equations”, Proc.Amer.Math.Soc. 100, no.1, 87-93.
  • Tuzik A.I. (1989): “Solvability of a Discrete Equations of Convolution Type with Variable Coefficients”, Differentsial’nye Urauneniya 25, no.8, 1462-1464, 1472.
There are 9 citations in total.

Details

Other ID JA38FH59YE
Journal Section Research Article
Authors

Seval Çatal This is me

Publication Date January 1, 2004
Published in Issue Year 2004 Volume: 6 Issue: 1

Cite

APA Çatal, S. (2004). CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 6(1), 129-138.
AMA Çatal S. CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ. DEUFMD. January 2004;6(1):129-138.
Chicago Çatal, Seval. “CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 6, no. 1 (January 2004): 129-38.
EndNote Çatal S (January 1, 2004) CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 6 1 129–138.
IEEE S. Çatal, “CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ”, DEUFMD, vol. 6, no. 1, pp. 129–138, 2004.
ISNAD Çatal, Seval. “CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 6/1 (January 2004), 129-138.
JAMA Çatal S. CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ. DEUFMD. 2004;6:129–138.
MLA Çatal, Seval. “CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 6, no. 1, 2004, pp. 129-38.
Vancouver Çatal S. CEBİRSEL KATSAYILI HOMOJEN DİFERANSİYEL DENKLEMLERİN FARK DENKLEMLERİ İLE ÇÖZÜMÜ. DEUFMD. 2004;6(1):129-38.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.