BibTex RIS Cite

NEUTRON-PHYSICS ANALYSIS OF HYBRID BLANKETWITH FLATTENED POWER PROFILE AND THO2+CMO2 MIXED FUEL

Year 2002, Volume: 4 Issue: 3, 137 - 158, 01.09.2002

Abstract

A set of successive density corrections is applied to achieve a flat fission power density in
a hybrid blanket by using a mixed fuel (ThO2 and 244CmO2) with variable fractions of the fuel
components in the radial directions. The neutronic analysis is carried out on a blanket with a
hard neutron spectrum in the fissionable zone. Due to these precautions in the blanket design,
the fission power density could be kept quasi-constant over a relatively long plant lifetime
and so, in addition fissile fuel breeding such as
233U and 245Cm with superior nuclear
properties, it could be possible to reach a hybrid blanket design for substantial electricity
production.
The ratio of the peak to the average fission power density is increased from 1.06036 at
start up only to 1.07416 after an operation period of 24 months by a plant factor of 75%
under a first-wall semi-catalyzed fusion neutron flux load of 1014 n/ cm2
s

References

  • Al Kusayer T.A., Şahin S., Drira A.(1988): “CLAW-IV, Coupled 30 Neutrons, 12 Gamma- Ray Group Cross Section With Retrieval Programs for Radiation Transport Calculations”, available from the Radiation Shielding Information Center, Oak Ridge National Lab., RSIC-Newsletter.
  • Arthur E.D. (1981): “A New Concept for Accelerator Driven Transmutation of Nuclear Wastes”, Fusion Technology, Vol. 20, 641.
  • Barzilov A.P., Gulevich A.V., Zrodnikov A.V., Kukharchuh O.F., Polevoy V.B., Feoktistov L.P. (1995): “Concept of a Coupled Blanket System for the Reactor”, IEEE/NPSS 16 Sympesium Fusion Engineering, Book of Abstracts, Champaign, USA. Hybrid Fission-Fusion th
  • Basov N.G. et al.(1990): “Transmutation of High-Level Fission Products and Activities in a Laser-Driven Fusion Reactor”, Fusion Technology, Vol. 22, 350.
  • Berwald O.H. et al.(1982): “Fission Suppressed Hybrid Reactor the Fusion Breder”, UCID-19638, Lawrence Livermore Laboratory.
  • Berwald O.H., Duderstadt J.J (1990):“Preliminary Design and Neutronic Analysis of a Laser Fusioon Driven Actinide Waste Burning Hybrid Reactor”, Nuclear Technology, Vol. 42, pp.34.
  • Cappicilo M.W., Ridar W.S., Iveland J.R. (1984): “Target/Blanket Conceptual Designs for the Los Alamos Accelarator Transmutation of Nuclear Waste (ATW) Concept”, Fusion Technology, Vol. 20, pp. 648.
  • Conn R.W., Kontrowitz F., Vogelsang W.F. (1980): “Hybrds for Direct Enrichment and Self- Protected Fissile Fuel Production”, Nuclear Technology, Vol.49, pp.458.
  • Doncals N.C., Varner S.Y., Pathbun R.W., Petras D.S. (1985): “Non-refueling Liquid-Metal Fast Breeder Reactor”, transactions, American Nuclear Society, 33, 445.
  • Duderstadt J.J., Hamilton L.J. (1976): “Nuclear Reactor Analysis”, University of Michigan.
  • Dyachanko P.P. et al. (1993): “Hybrid Fission-Fusion Power Plant with Laser Initiation”, IPPE, Obnisk, Preprint #2327.
  • Ehrlich K. (1977): “First Wall Materials For Fusion Reactors”, Kerntechnik, 19, 263, Jahrgang.
  • Engle W.W. JR. (1970): “ANISN, A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering”, ORNL-K-1693, Oak Ridge National Lab.
  • Erickson K., Mc Cormick N.Y., Woodruff G.L. (1981): “Nucl.Technol./Fusion”, 1, 533.
  • Greenspan E. (1984): ,”Fusion Fission Hybrid Reactors”, Advanced in Nuclear Science and Techology, Vol. 16, Editors Lewins, J and Becker, M., Plenum.
  • Greenspan E., Miley G.H. (1981): “Pathways for Fusion Penetration into the Energy Economy”, Trans. Am. Nucl. Soc., 38, 253.
  • Greenspan E., Misulovin A., Gilai D. (1983): “Nucl. Technol./Fusion”, 3, 485.
  • House P.A. (1994): “HYLIFE-II Reactor Chamber Design Refinements”, Fusion Technology, 26, 1178.
  • Itoh S.I.A., Fukuyama et al. (1989): “Steady-State Operation Regime of Tokomak Reactor Plasma: Consistancy Analysis”, Fusion Technology, Vol. 16, 343.
  • Kulsinski G.L. et al. (1989): “APOLLO-An Advanced Fuel Fusion Power Reactor for the st
  • Century”, Fusion Technology, Vol. 15, p.1224.
  • Lee J.D. et al.(1982), “Feasiblity Study of a Fission-Suppressed Tandem-Mirror Hybrid Reactor”, UCID-19327, Lawrence Livermore Laboratory.
  • Leonard B.R. Jr.(1973): “A Review of Fusion-Fission (hybrid) Concepts” Nucl. Tech., 20, 161.
  • Maniscolco J.A. et al.(1981): “Recent Progress in Fusion-Fission (Hybrid) Reactor Design Studies”, Nuclear Technology/Fusion, 1(4), p.419.
  • Mogahed E.A., Khatar H.Y., Sautarius J.F. (2000) “A Helium Cooled Li2O Straight Tube Blanket Design for Cylindirical Geometry”, 14 Topical Meeting on the Technology of Fusion Energy, October 15-19, Paih City UT. th
  • Moir R.W. (1981): “The Fusion-Fission Fuel Factory”, Fusion vol. 1, Part B, Chap. 15, Teller E., Ed., Academic Press, New York.
  • Moir R.W. (1996): “The High-Yield Lithium-Injection Fusion-Energy HYLIFE-II Inertice Fusion Energy (IFE) Power Plant Concept and Implications for IFE”, Phys. Plasmas, 6, 2447.
  • Mynatt F.R. (1977): “Analysis of Acceleration Breeder Concepts with LMFBR, GCFF and Molten Salt Type Blankets”, Proc. Information Mtg. Accelerator Breeding, Uptown, NewYork, Sayfa 18-19.
  • Sawan M.E., Malang S. (1999): “Neutronics Features of a High Power Density First Wall/Blanket with Lithium Evaporation Cooling”, 5 International Symposium on Fusion Nuclear Technology, Italy,19-24 Sept. th
  • Szoke A., Moir R.W. (1991): “A Realistic, Gradual and Economuse Approach to Fusion Power”, Fusion Technology, 20, 1012.
  • Şahin S. (1977): “Physics of the Fusion-Fussion (Hybrid) Reactors”, Ecole Polytechnique Federale de Lausanne Institut de Genie Atomique 1015 Lausanne, Switzerland.
  • Şahin S. (1980): Trans. Am. Nucl. Soc., 35, 133, Nov.
  • Şahin S. (1981): Atomkernenergie/Kerntechnik, 39, 41.
  • Şahin S. (1982): “Aneutron Physics Analysis for the Experimental Facility LOTUS”, Atomkernenergie/Kerntechnik, 41, 95.
  • Şahin S. (1983): “Physics of the Fusion-Fission (Hybrid) Reactors”, Proc. 8 th Int. Summer College on Phsics and Contemporary Needs, İslamabad, Pakistan.
  • Şahin S. (1992):“Nükleer Enerjide Yeni Dönem”, İnsan ve Kainat Dergisi.
  • Şahin S. et al. (1996): “ Radiation Damage in Liquid-Protected First Wall Materials for IFE Reactors”, Fusion Technology, Part. 2A, 30, 1027.
  • Şahin S., Al Ashaikh M. (1986): “A Numerical Graphical Power Flattening Method for Fast Hybrid Blankets”, Proc. 4 Int. Conf. Emerging Nuclear Systems, Madrid, Spain, June 30-July 4, p.59. th
  • Şahin S., Al Ashaikh M. (1987): “Fission Power Flattening in Hybrid Blankets Using Mixed Fuel”, Fusion Technology, 12, 395.
  • Şahin S., Al Kusayer T.A. (1983)“Advanced Fusion Fuel Driven AYMAN Hybrid Blankets”, Proc. 6 Int. Conf. Alternative Energy Sources, Miami Beach, Florida, p. 161, Dec. 12-14.
  • Şahin S., Al Kusayer T.A., Roof M.A. (1986): “Preliminary Design Studies of a Cylindrical Experimental Hybrid Blanket with Deuterium-Tritium Driver”, Fusion Technology, 10, p.84.
  • Şahin S, Baltacıoğlu E.,Yapıcı H. (1991): “Potential of a Catalyzed Fusion-Fission Hybrid Reactor for the Regeneration of Candu Spent Fuel”, Fusion Technology, Vol. 20, pp. 26-39.
  • Şahin S., Erişen A., Çebi Y. (1988): “A 244
  • CmO2/Nat.-UO2 Hybrid Blanket with Flat
  • Fission Power Production”, Transactions of the Am. Nuc. Soc. And Eur. Nuc. Soc., Vol. 57, p.303.
  • Şahin S., Erişen A., Çebi Y. (1989): “Realisation of A Flat Fission Power Density in A Hybrid Blanket Overlong Operation Periods”, Fusion Technology, 15, 37.
  • Şahin S., Kumar. A.(1984): “Nucl. Technol./Fusion”, 5, 374.
  • Şahin S., Ünalan S., Yapıcı H. (1996): “Decrease of the CANDU Spent Fuel Nuclear Waste Inventories in Fusion-Fission (Hybrid) Reactors”, International Journal of Energy, Envirenment, Economics, Volume 4, Number 1, pp. 67-97.
  • Şahin S., Yapıcı H. (1989-1): “Rejuvenation of CANDU Spent Fuel in a Hybrid Blanket”, Transactions of the American Nuclear Society, Vol. 59, pp. 105-106.
  • Şahin S., Yapıcı H. (1989-2): “Investigation of the Neutronic Potential of Moderated and Fast (D-T) Hybrid Blankets for Rejuvenation of CANDU Spent Fuel”, Fusion Technology, 16, p.331.
  • Şahin S., Yapıcı H., Baltacıoğlu E. (1989): “Heavy Water Reactor Spent-Fuel Regeneration with Fusion Neutrons”, Transactions of the American Nuclear Society, Vol. 60.
  • Şahin S., Yapıcı H., Baltacıoğlu E. (1994): “Rejuvenation of LWR Spent Fuel in a Catalyzed Fusion Hybrid Blanket”, Kerntechnic, 59, 6, 243.
  • Ünalan S. (1998-1): “Rejuvenation of the LWR Spent Fuel in (D-T) Driven Hybrid Reactors”, Fusion Engineering and Design, 38, pp.393-416.
  • Ünalan S. (1998-2): “Rejuvenation of the CANDU Spent Fuel in (D-T) Driven Hybrid Reactors”, Fusion Technology, Vol. 33, pp.1-20.
  • Ünalan S., Yapıcı H., Özceyhan V. (1998) “Improvement of Neutronic Performance of a Catalyzed (D,D) Driven Hybrid Reactor Using Various Moderators and Coolants Materials”, The Arabian Journal for Science and Engineering, Vol. 23, Number 1A, pp. 35-46.
  • Yapıcı H. (1989): “Candu Tüketilmiş Yakıtının Gençleştirilmesi için Modere Edilmiş ve Hızlı (D,T) Hibrid Blanketlerin Potansiyelinin İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, pp.176-178, Nov. 26-30.
  • Yapıcı H., Kahraman N.(1997): “Investigation of the Neutronic Potential of Pure (D,T) and Catalyzed (D,D) Fusion-Driven Hybrid Reactors for Regeneration of LWR Spent Fuel”, The International Journal of Science and Engineering, Vol. 1, No.1.
  • Youssef M.Z., Conn R.W. (1979): “A Survey of Fusion-Fission System Designs and Nuclear
  • Analysis”, UWFDM-308, University of Wisconsin.
  • Weinberg A.M., Wigner E.E. (1959): “The Physical Theory of Neutron Chain Reactors”, The University of Chicago.
  • Wells W.M. (1978): “ORNL Fusion Power Demonstrating Study: Lityum as a Blanket Coolant”, Oak Ridge National Laboratory Report ORNL-TM-6214.
  • Woodroff G.L. (1985): “Neutronic Analysis of (D-D) Fusion-Fission Hybrids”, Trans American nUclear Society, 49, p.102.

GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ

Year 2002, Volume: 4 Issue: 3, 137 - 158, 01.09.2002

Abstract

Radyal yönde yakıt yüzdeleri değişen bir karışık yakıt (ThO2 ve
244CmO2) kullanarak, bir
hybrid blankette düzgün fisyon güç yoğunluğu elde etmek üzere bir dizi yoğunluk düzeltme
hesapları gerçekleştirilmiştir. Nötronik analiz, yakıt bölgesi hızlı nötron spektrumuna maruz
bırakılan bir blanket üzerine yapılmıştır. Blanket dizaynı sırasında düşünülen bu
yaklaşımlarla, fisyon güç yoğunluğu, uzun bir reaktör işletim periyodunda, hemen hemen
düzgün olarak muhafaza edilmiş ve böylece, 233U ve çok üstün nükleer özelliklere sahip
245Cm gibi fissile yakıt üretiminin yanı sıra, esas olarak elektrik üretimi için düşünülebilecek
bir hyrid blanket tasarımına ulaşılabilmiştir.
En büyük fisyon yoğunluğu değerinin ortalama değerine oranı, 24 aylık bir işletim
periyodu sonunda, başlangıçtaki 1,06036 değerinden sadece 1,07316 değerine yükselmiştir.
Hesaplamalarda %75’lik bir tesis faktörü ve 1014 n/cm2
s lik yarı katalize füzyon nötronları
akı yükü esas alınmıştır

References

  • Al Kusayer T.A., Şahin S., Drira A.(1988): “CLAW-IV, Coupled 30 Neutrons, 12 Gamma- Ray Group Cross Section With Retrieval Programs for Radiation Transport Calculations”, available from the Radiation Shielding Information Center, Oak Ridge National Lab., RSIC-Newsletter.
  • Arthur E.D. (1981): “A New Concept for Accelerator Driven Transmutation of Nuclear Wastes”, Fusion Technology, Vol. 20, 641.
  • Barzilov A.P., Gulevich A.V., Zrodnikov A.V., Kukharchuh O.F., Polevoy V.B., Feoktistov L.P. (1995): “Concept of a Coupled Blanket System for the Reactor”, IEEE/NPSS 16 Sympesium Fusion Engineering, Book of Abstracts, Champaign, USA. Hybrid Fission-Fusion th
  • Basov N.G. et al.(1990): “Transmutation of High-Level Fission Products and Activities in a Laser-Driven Fusion Reactor”, Fusion Technology, Vol. 22, 350.
  • Berwald O.H. et al.(1982): “Fission Suppressed Hybrid Reactor the Fusion Breder”, UCID-19638, Lawrence Livermore Laboratory.
  • Berwald O.H., Duderstadt J.J (1990):“Preliminary Design and Neutronic Analysis of a Laser Fusioon Driven Actinide Waste Burning Hybrid Reactor”, Nuclear Technology, Vol. 42, pp.34.
  • Cappicilo M.W., Ridar W.S., Iveland J.R. (1984): “Target/Blanket Conceptual Designs for the Los Alamos Accelarator Transmutation of Nuclear Waste (ATW) Concept”, Fusion Technology, Vol. 20, pp. 648.
  • Conn R.W., Kontrowitz F., Vogelsang W.F. (1980): “Hybrds for Direct Enrichment and Self- Protected Fissile Fuel Production”, Nuclear Technology, Vol.49, pp.458.
  • Doncals N.C., Varner S.Y., Pathbun R.W., Petras D.S. (1985): “Non-refueling Liquid-Metal Fast Breeder Reactor”, transactions, American Nuclear Society, 33, 445.
  • Duderstadt J.J., Hamilton L.J. (1976): “Nuclear Reactor Analysis”, University of Michigan.
  • Dyachanko P.P. et al. (1993): “Hybrid Fission-Fusion Power Plant with Laser Initiation”, IPPE, Obnisk, Preprint #2327.
  • Ehrlich K. (1977): “First Wall Materials For Fusion Reactors”, Kerntechnik, 19, 263, Jahrgang.
  • Engle W.W. JR. (1970): “ANISN, A One-Dimensional Discrete Ordinates Transport Code with Anisotropic Scattering”, ORNL-K-1693, Oak Ridge National Lab.
  • Erickson K., Mc Cormick N.Y., Woodruff G.L. (1981): “Nucl.Technol./Fusion”, 1, 533.
  • Greenspan E. (1984): ,”Fusion Fission Hybrid Reactors”, Advanced in Nuclear Science and Techology, Vol. 16, Editors Lewins, J and Becker, M., Plenum.
  • Greenspan E., Miley G.H. (1981): “Pathways for Fusion Penetration into the Energy Economy”, Trans. Am. Nucl. Soc., 38, 253.
  • Greenspan E., Misulovin A., Gilai D. (1983): “Nucl. Technol./Fusion”, 3, 485.
  • House P.A. (1994): “HYLIFE-II Reactor Chamber Design Refinements”, Fusion Technology, 26, 1178.
  • Itoh S.I.A., Fukuyama et al. (1989): “Steady-State Operation Regime of Tokomak Reactor Plasma: Consistancy Analysis”, Fusion Technology, Vol. 16, 343.
  • Kulsinski G.L. et al. (1989): “APOLLO-An Advanced Fuel Fusion Power Reactor for the st
  • Century”, Fusion Technology, Vol. 15, p.1224.
  • Lee J.D. et al.(1982), “Feasiblity Study of a Fission-Suppressed Tandem-Mirror Hybrid Reactor”, UCID-19327, Lawrence Livermore Laboratory.
  • Leonard B.R. Jr.(1973): “A Review of Fusion-Fission (hybrid) Concepts” Nucl. Tech., 20, 161.
  • Maniscolco J.A. et al.(1981): “Recent Progress in Fusion-Fission (Hybrid) Reactor Design Studies”, Nuclear Technology/Fusion, 1(4), p.419.
  • Mogahed E.A., Khatar H.Y., Sautarius J.F. (2000) “A Helium Cooled Li2O Straight Tube Blanket Design for Cylindirical Geometry”, 14 Topical Meeting on the Technology of Fusion Energy, October 15-19, Paih City UT. th
  • Moir R.W. (1981): “The Fusion-Fission Fuel Factory”, Fusion vol. 1, Part B, Chap. 15, Teller E., Ed., Academic Press, New York.
  • Moir R.W. (1996): “The High-Yield Lithium-Injection Fusion-Energy HYLIFE-II Inertice Fusion Energy (IFE) Power Plant Concept and Implications for IFE”, Phys. Plasmas, 6, 2447.
  • Mynatt F.R. (1977): “Analysis of Acceleration Breeder Concepts with LMFBR, GCFF and Molten Salt Type Blankets”, Proc. Information Mtg. Accelerator Breeding, Uptown, NewYork, Sayfa 18-19.
  • Sawan M.E., Malang S. (1999): “Neutronics Features of a High Power Density First Wall/Blanket with Lithium Evaporation Cooling”, 5 International Symposium on Fusion Nuclear Technology, Italy,19-24 Sept. th
  • Szoke A., Moir R.W. (1991): “A Realistic, Gradual and Economuse Approach to Fusion Power”, Fusion Technology, 20, 1012.
  • Şahin S. (1977): “Physics of the Fusion-Fussion (Hybrid) Reactors”, Ecole Polytechnique Federale de Lausanne Institut de Genie Atomique 1015 Lausanne, Switzerland.
  • Şahin S. (1980): Trans. Am. Nucl. Soc., 35, 133, Nov.
  • Şahin S. (1981): Atomkernenergie/Kerntechnik, 39, 41.
  • Şahin S. (1982): “Aneutron Physics Analysis for the Experimental Facility LOTUS”, Atomkernenergie/Kerntechnik, 41, 95.
  • Şahin S. (1983): “Physics of the Fusion-Fission (Hybrid) Reactors”, Proc. 8 th Int. Summer College on Phsics and Contemporary Needs, İslamabad, Pakistan.
  • Şahin S. (1992):“Nükleer Enerjide Yeni Dönem”, İnsan ve Kainat Dergisi.
  • Şahin S. et al. (1996): “ Radiation Damage in Liquid-Protected First Wall Materials for IFE Reactors”, Fusion Technology, Part. 2A, 30, 1027.
  • Şahin S., Al Ashaikh M. (1986): “A Numerical Graphical Power Flattening Method for Fast Hybrid Blankets”, Proc. 4 Int. Conf. Emerging Nuclear Systems, Madrid, Spain, June 30-July 4, p.59. th
  • Şahin S., Al Ashaikh M. (1987): “Fission Power Flattening in Hybrid Blankets Using Mixed Fuel”, Fusion Technology, 12, 395.
  • Şahin S., Al Kusayer T.A. (1983)“Advanced Fusion Fuel Driven AYMAN Hybrid Blankets”, Proc. 6 Int. Conf. Alternative Energy Sources, Miami Beach, Florida, p. 161, Dec. 12-14.
  • Şahin S., Al Kusayer T.A., Roof M.A. (1986): “Preliminary Design Studies of a Cylindrical Experimental Hybrid Blanket with Deuterium-Tritium Driver”, Fusion Technology, 10, p.84.
  • Şahin S, Baltacıoğlu E.,Yapıcı H. (1991): “Potential of a Catalyzed Fusion-Fission Hybrid Reactor for the Regeneration of Candu Spent Fuel”, Fusion Technology, Vol. 20, pp. 26-39.
  • Şahin S., Erişen A., Çebi Y. (1988): “A 244
  • CmO2/Nat.-UO2 Hybrid Blanket with Flat
  • Fission Power Production”, Transactions of the Am. Nuc. Soc. And Eur. Nuc. Soc., Vol. 57, p.303.
  • Şahin S., Erişen A., Çebi Y. (1989): “Realisation of A Flat Fission Power Density in A Hybrid Blanket Overlong Operation Periods”, Fusion Technology, 15, 37.
  • Şahin S., Kumar. A.(1984): “Nucl. Technol./Fusion”, 5, 374.
  • Şahin S., Ünalan S., Yapıcı H. (1996): “Decrease of the CANDU Spent Fuel Nuclear Waste Inventories in Fusion-Fission (Hybrid) Reactors”, International Journal of Energy, Envirenment, Economics, Volume 4, Number 1, pp. 67-97.
  • Şahin S., Yapıcı H. (1989-1): “Rejuvenation of CANDU Spent Fuel in a Hybrid Blanket”, Transactions of the American Nuclear Society, Vol. 59, pp. 105-106.
  • Şahin S., Yapıcı H. (1989-2): “Investigation of the Neutronic Potential of Moderated and Fast (D-T) Hybrid Blankets for Rejuvenation of CANDU Spent Fuel”, Fusion Technology, 16, p.331.
  • Şahin S., Yapıcı H., Baltacıoğlu E. (1989): “Heavy Water Reactor Spent-Fuel Regeneration with Fusion Neutrons”, Transactions of the American Nuclear Society, Vol. 60.
  • Şahin S., Yapıcı H., Baltacıoğlu E. (1994): “Rejuvenation of LWR Spent Fuel in a Catalyzed Fusion Hybrid Blanket”, Kerntechnic, 59, 6, 243.
  • Ünalan S. (1998-1): “Rejuvenation of the LWR Spent Fuel in (D-T) Driven Hybrid Reactors”, Fusion Engineering and Design, 38, pp.393-416.
  • Ünalan S. (1998-2): “Rejuvenation of the CANDU Spent Fuel in (D-T) Driven Hybrid Reactors”, Fusion Technology, Vol. 33, pp.1-20.
  • Ünalan S., Yapıcı H., Özceyhan V. (1998) “Improvement of Neutronic Performance of a Catalyzed (D,D) Driven Hybrid Reactor Using Various Moderators and Coolants Materials”, The Arabian Journal for Science and Engineering, Vol. 23, Number 1A, pp. 35-46.
  • Yapıcı H. (1989): “Candu Tüketilmiş Yakıtının Gençleştirilmesi için Modere Edilmiş ve Hızlı (D,T) Hibrid Blanketlerin Potansiyelinin İncelenmesi”, Erciyes Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, pp.176-178, Nov. 26-30.
  • Yapıcı H., Kahraman N.(1997): “Investigation of the Neutronic Potential of Pure (D,T) and Catalyzed (D,D) Fusion-Driven Hybrid Reactors for Regeneration of LWR Spent Fuel”, The International Journal of Science and Engineering, Vol. 1, No.1.
  • Youssef M.Z., Conn R.W. (1979): “A Survey of Fusion-Fission System Designs and Nuclear
  • Analysis”, UWFDM-308, University of Wisconsin.
  • Weinberg A.M., Wigner E.E. (1959): “The Physical Theory of Neutron Chain Reactors”, The University of Chicago.
  • Wells W.M. (1978): “ORNL Fusion Power Demonstrating Study: Lityum as a Blanket Coolant”, Oak Ridge National Laboratory Report ORNL-TM-6214.
  • Woodroff G.L. (1985): “Neutronic Analysis of (D-D) Fusion-Fission Hybrids”, Trans American nUclear Society, 49, p.102.
There are 62 citations in total.

Details

Other ID JA47GR88PN
Journal Section Research Article
Authors

Saim Koçak This is me

Ali Erişen This is me

Publication Date September 1, 2002
Published in Issue Year 2002 Volume: 4 Issue: 3

Cite

APA Koçak, S., & Erişen, A. (2002). GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 4(3), 137-158.
AMA Koçak S, Erişen A. GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ. DEUFMD. September 2002;4(3):137-158.
Chicago Koçak, Saim, and Ali Erişen. “GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 4, no. 3 (September 2002): 137-58.
EndNote Koçak S, Erişen A (September 1, 2002) GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 4 3 137–158.
IEEE S. Koçak and A. Erişen, “GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ”, DEUFMD, vol. 4, no. 3, pp. 137–158, 2002.
ISNAD Koçak, Saim - Erişen, Ali. “GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 4/3 (September 2002), 137-158.
JAMA Koçak S, Erişen A. GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ. DEUFMD. 2002;4:137–158.
MLA Koçak, Saim and Ali Erişen. “GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 4, no. 3, 2002, pp. 137-58.
Vancouver Koçak S, Erişen A. GÜÇ ÜRETİMİ DÜZGÜNLEŞTİRİLMİŞ THO2+CMO2 KARIŞIK NÜKLEER YAKITLI HYBRİD BLANKETTİN NÖTRONİK ANALİZİ. DEUFMD. 2002;4(3):137-58.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.