BibTex RIS Cite

FORWARD AND INVERSE MODELLING OF A GRAVITY FIELD RESULTING FROM A DENSITY INTERFACE USING PARK-OLDENBURG METHOD

Year 2002, Volume: 4 Issue: 1, 37 - 51, 01.01.2002

Abstract

In order to reach the inverse solution for the perturbing body giving rise to the gravitational anomaly
through the rearrangement of the formula used for the rapid calculation of such anomaly caused by a two
dimensional uneven layer of material. The scheme calculates the Fourier transform of the gravitational anomaly
as the sum of Fourier transforms of powers of the perturbing topography. This method is computationally much
more efficient than calculating the gravitational field by breaking up the model into a set of prisms whose
contributions are calculated separately and summed. Essentially this method comprises of computations
involving Fourier transformations, which are relatively fast and straightforward with the FFT algorithm. Its
speed makes the method to be presented as a practical one. The effects of the two parameters, the density
contrast (ρ) and the level at which the inversion is made (zo) are observed, cause the nonuniqueness of the
inversion. Without additional information constraining these parameters, the ambiguity in the gravity
interpretation can not be reduced. Convergence of the inversion is ensured by a suitable low pass filter in
frequency domain. However, if the assumed density was too small or reference level too large, no topography
could be found which would give rise to an observed anomaly. The ability of this inversion scheme to handle
large numbers of model points without greatly decreasing the numerical stability or greatly increasing the
computation time makes it particularly attractiv

References

  • Condie K.C. (1976): “Plate Tectonics and Crustal Evolution”, Pergamon Press Inc., New York.
  • Corbato C.E. (1965) “A Least-Squares Precedure for Gravity Interpretation”, Geophysics, 30, 228-233.
  • Darracott B.W., Fairhead J.D., Girdler R.W. (1972): “Gravity and Magnetic Surveys in Northern Tanzania and Southern Kenya”, Tectonophysics, V.15,131-141.
  • Dyrelius D., Vogel A. (1972): “Improvement of Convergency in Iterative Gravity Interpretation”, Geophys. J., R. Astr. Soc., 27, 195-205.
  • Kaya O. (1981): “Batı Anadolu Altbindirmesi: Ultramafik Birimin ve Menderes Masifinin Jeolojik Konumu”, Doğa, Atatürk Özel Sayısı, 15-36.
  • Kaya O. (1982): “Tersiyer Sırt Yitmesi: Doğu Bölgelerinin Yapısı ve Mağmatikliği için Olası bir Mekanizma”, Türkiye Jeoloji Kurultayı, Batı Anadolu’nun genç tektoniği ve volkanizması paneli, 39-59.
  • MTA (1979): “Türkiye Bouguer Gravite Anomali Haritası (1/500 000 ölçekli İzmir ve Denizli paftaları)”.
  • Oldenburg D.W. (1974): “The Inversion and Interpretation of Gravity Anomalies”, Geophysics, 39, 526-536.
  • Özelçi F.(1973): “Gravity Anomalies of the Eastern Mediterranean”, MTA Enst. Dergisi, 80.
  • Parker R.L. (1973): “The Rapid Calculation of Potential Anomalies”, Geophys. J., R. Astr. Soc., 31, 447-455.
  • Rabinowitz P.D., Ryan W.B.F. (1970): “Gravity Anomalies and Crustal Shortening in the Eastern Mediterranean”, Tectonophysics, V.10,285-608.
  • Skeels D.C. (1947): “Ambiguity in Gravity Interpretation”, Geophysics, 12, 43-56.
  • Tanner J.G. (1967): “An Automated Method of Gravity Interpretation”, Geophys. J., R. Astr. Soc., 13, 339-347.

PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI)

Year 2002, Volume: 4 Issue: 1, 37 - 51, 01.01.2002

Abstract

through the rearrangement of the formula used for the rapid calculation of such anomaly caused by a two dimensional uneven layer of material. The scheme calculates the Fourier transform of the gravitational anomaly as the sum of Fourier transforms of powers of the perturbing topography. This method is computationally much more efficient than calculating the gravitational field by breaking up the model into a set of prisms whose contributions are calculated separately and summed. Essentially this method comprises of computations involving Fourier transformations, which are relatively fast and straightforward with the FFT algorithm. Its speed makes the method to be presented as a practical one. The effects of the two parameters, the density contrast (ρ) and the level at which the inversion is made (zo) are observed, cause the nonuniqueness of the inversion. Without additional information constraining these parameters, the ambiguity in the gravity interpretation can not be reduced. Convergence of the inversion is ensured by a suitable low pass filter in frequency domain. However, if the assumed density was too small or reference level too large, no topography could be found which would give rise to an observed anomaly. The ability of this inversion scheme to handle large numbers of model points without greatly decreasing the numerical stability or greatly increasing the computation time makes it particularly attractive

References

  • Condie K.C. (1976): “Plate Tectonics and Crustal Evolution”, Pergamon Press Inc., New York.
  • Corbato C.E. (1965) “A Least-Squares Precedure for Gravity Interpretation”, Geophysics, 30, 228-233.
  • Darracott B.W., Fairhead J.D., Girdler R.W. (1972): “Gravity and Magnetic Surveys in Northern Tanzania and Southern Kenya”, Tectonophysics, V.15,131-141.
  • Dyrelius D., Vogel A. (1972): “Improvement of Convergency in Iterative Gravity Interpretation”, Geophys. J., R. Astr. Soc., 27, 195-205.
  • Kaya O. (1981): “Batı Anadolu Altbindirmesi: Ultramafik Birimin ve Menderes Masifinin Jeolojik Konumu”, Doğa, Atatürk Özel Sayısı, 15-36.
  • Kaya O. (1982): “Tersiyer Sırt Yitmesi: Doğu Bölgelerinin Yapısı ve Mağmatikliği için Olası bir Mekanizma”, Türkiye Jeoloji Kurultayı, Batı Anadolu’nun genç tektoniği ve volkanizması paneli, 39-59.
  • MTA (1979): “Türkiye Bouguer Gravite Anomali Haritası (1/500 000 ölçekli İzmir ve Denizli paftaları)”.
  • Oldenburg D.W. (1974): “The Inversion and Interpretation of Gravity Anomalies”, Geophysics, 39, 526-536.
  • Özelçi F.(1973): “Gravity Anomalies of the Eastern Mediterranean”, MTA Enst. Dergisi, 80.
  • Parker R.L. (1973): “The Rapid Calculation of Potential Anomalies”, Geophys. J., R. Astr. Soc., 31, 447-455.
  • Rabinowitz P.D., Ryan W.B.F. (1970): “Gravity Anomalies and Crustal Shortening in the Eastern Mediterranean”, Tectonophysics, V.10,285-608.
  • Skeels D.C. (1947): “Ambiguity in Gravity Interpretation”, Geophysics, 12, 43-56.
  • Tanner J.G. (1967): “An Automated Method of Gravity Interpretation”, Geophys. J., R. Astr. Soc., 13, 339-347.
There are 13 citations in total.

Details

Other ID JA28HB65UF
Journal Section Research Article
Authors

Coşkun Sarı This is me

Ali Levent Akyol This is me

Publication Date January 1, 2002
Published in Issue Year 2002 Volume: 4 Issue: 1

Cite

APA Sarı, C., & Akyol, A. L. (2002). PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI). Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 4(1), 37-51.
AMA Sarı C, Akyol AL. PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI). DEUFMD. January 2002;4(1):37-51.
Chicago Sarı, Coşkun, and Ali Levent Akyol. “PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI)”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 4, no. 1 (January 2002): 37-51.
EndNote Sarı C, Akyol AL (January 1, 2002) PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI). Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 4 1 37–51.
IEEE C. Sarı and A. L. Akyol, “PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI)”, DEUFMD, vol. 4, no. 1, pp. 37–51, 2002.
ISNAD Sarı, Coşkun - Akyol, Ali Levent. “PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI)”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 4/1 (January 2002), 37-51.
JAMA Sarı C, Akyol AL. PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI). DEUFMD. 2002;4:37–51.
MLA Sarı, Coşkun and Ali Levent Akyol. “PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI)”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 4, no. 1, 2002, pp. 37-51.
Vancouver Sarı C, Akyol AL. PARKER–OLDENBURG YÖNTEMİ İLE GRAVİTE VERİLERİNİN DÜZ VE TERS MODELLEMESİ (YOĞUNLUK ARAYÜZEYİNİN SAPTANMASI). DEUFMD. 2002;4(1):37-51.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.