Research Article
BibTex RIS Cite

Çimentolu Macun Dolgunun Dayanım ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi

Year 2019, Volume: 21 Issue: 61, 15 - 23, 15.01.2019

Abstract

Bu çalışmada, sülfürlü atık yerine
ağırlıkça %5-15 oranında C-sınıfı uçucu kül (UK) ikamesinin çimentolu macun
dolgunun (ÇMD) dayanım ve mikroyapı özelliklerine etkisi incelenmiştir. Bu
kapsamda kontrol numuneleri %8,5 bağlayıcı oranında, UK içeren dolgu numuneleri
ise %7,5 bağlayıcı oranında hazırlanmıştır. Bu numuneler, tek eksenli basınç
dayanımı (TEBD) ve porozite (MIP) testlerine tabi tutulmuştur. Bulgular
değerlendirildiğinde, UK içeren tüm ÇMD numunelerinin kontrol numunelerine
kıyasla 1,18-3,16 kat daha yüksek TEBD ürettiği gözlemlenmiştir. Dolgunun
stabilite (TEBD≥1,0MPa) kriterini tüm numuneler sağlarken, tavan (zemin)
tahkimatı (TEBD≥5,0MPa) kriterini sadece %15 UK’lı numuneler sağlamıştır.
Porozite (MIP) gelişimleri incelendiğinde, UK ikamesi numunelerin mikroyapı
özelliklerini daha fazla iyileştirmiştir. Elde edilen sonuçlardan, C-sınıfı UK
kullanımının ÇMD’nin dayanım, duraylılık ve mikroyapı özelliklerinin
iyileştirilmesinde oldukça faydalı olduğu sonucuna varılmıştır.

References

  • [1] European Commission, 2009. Reference document on best available techniques for management of tailings and waste-rock in mining activities, s. 427-435.
  • [2] Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., Eğriboyunoğlu, M., Yılmaz, K. 2017. Macun Dolgunun Çevresel Etkileri: ÇBİ Deneyimi. Uluslararası Madencilik Ve Çevre Sempozyumu (ISME 2017), 27-29 Eylül, Bodrum/Muğla, 359-375.
  • [3] Ouellet, S., Bussière, B., Aubertin, M., Benzaazoua, M. 2007. Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results. Cement and Concrete Research, Cilt. 37, No. 12, s. 1654-1665. DOI: 10.1016/j.cemconres.2007.08.016
  • [4] Bertrand, V.J., Monroy, M.G., Lawrence, R.W., 2000. Weathering characteristics of cemented paste backfill: mineralogy and solid phase chemistry. In Proceedings from the 5th international conference on acid rock drainage, 863-876.
  • [5] Tariq, A., Nehdi, M. 2007. Developing durable paste backfill from sulphidic tailings. Waste and Resource Management, Cilt. 160, No. 4, s. 155-166. DOI: 10.1680/warm.2007.160.4.155
  • [6] Cihangir, F., Ercikdi, B., Kesimal, A., Turan, A., Deveci, H. 2012. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: effect of binder type and dosage. Minerals Engineering, Cilt. 30, s. 33-43. DOI: 10.1016/j.mineng.2012.01.009
  • [7] Ercikdi, B., Külekci, G., Yılmaz, T. 2015. Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Construction and Building Materials, Cilt. 93, s. 573-583. DOI: 10.1016/j.conbuildmat.2015.06.042
  • [8] Yin, S., Shao, Y., Wu, A., Wang, Y., Chen, X. 2018. Expansion and strength properties of cemented backfill using sulphidic mill tailings. Construction and Building Materials, Cilt. 165, s. 138-148. DOI: 10.1016/j.conbuildmat.2018.01.005
  • [9] Zheng, J., Guo, L., Sun, X., Li, W., Jia, Q. 2018. Study on the strength development of cemented backfill body from lead-zinc mine tailings with sulphide. Advances in Materials Science and Engineering, DOI: 10.1155/2018/7278014 (In Press).
  • [10] Xenidis, A., Mylona, E., Paspaliaris, I. 2002. Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Management, Cilt. 22 No. 6, s. 631-641. DOI: 10.1016/S0956-053X(01)00053-8
  • [11] Tozsin, G., Arol, A.I., Oztas, T., Kalkan, E. 2014. Using marble wastes as a soil amendment for acidic soil neutralization. Journal of environmental management, Cilt. 133, s. 374-377. DOI: 10.1016/j.jenvman.2013.12.022
  • [12] Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H., Alp, İ. 2009. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings. Journal of hazardous materials, Cilt. 168, No. 2-3, s. 848-856. DOI: 10.1016/j.jhazmat.2009.02.100
  • [13] Türker, P., Erdoğan, B., Katnaş, F., Yeğinobalı, A. 2009. Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri. Türkiye Çimento Müstahsilleri Birliği (TÇMB), AR-GE Enstitüsü, Ankara, s. 114.
  • [14] ASTM C618-17a, 2017. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • [15] ASTM C39/C39M−16b, 2016. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • [16] ASTM D4404-10, 2010. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry, Annual Book of ASTM Standards, American Society of Testing Material.
  • [17] IUPAC, 1972. Manual of Symbols and Terminology. Appendix 2-Part 1: Colloid and Surface Chemistry, Journal of Pure and Applied Chemistry. Cilt. 31, s. 578–593. DOI: 10.1351/pac197231040577
  • [18] Wang, X.Y., Park, K.B. 2015. Analysis of compressive strength development of concrete containing high volume fly ash. Construction and Building Materials, Cilt. 98, s. 810-819. DOI: 10.1016/j.conbuildmat.2015.08.099
  • [19] Memon, A.H., Radin, S.S., Zain, M.F.M., Trottier, J.F. 2002. Effects of mineral and chemical admixtures on high-strength concrete in seawater. Cement and Concrete Research, Cilt. 32, No. 3, s. 373-377. DOI: 10.1016/S0008-8846(01)00687-1
  • [20] Shaikh, F.U.A, Supit, S.W.M. 2015. Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and building materials, Cilt. 82, s. 192-205. DOI: 10.1016/j.conbuildmat.2015.02.068
  • [21] Yumlu, M. 2001. Backfill Practices at Cayeli Mine. 17th International Mining Congress and Exhibition of Turkey, 19-22 June, Ankara, 333-339.
  • [22] Belem, T., Benzaazoua, M. 2004. An overview on the use of paste backfill technology as a ground support method in cut-and-fill mines. 5th International Symposium on Ground support in Mining and Underground Construction, 28-30 September, Perth-Western Australia, 637-650.
  • [23] Yilmaz, E., Belem, T., Bussière, B., Benzaazoua, M. 2011. Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills. Cement and Concrete Composites, Cilt. 33, No. 6, s. 702-715. DOI: 10.1016/j.cemconcomp.2011.03.013
  • [24] Abdul-Hussain, N., Fall, M. 2011. Unsaturated hydraulic properties of cemented tailings backfill that contains sodium silicate. Engineering geology, Cilt. 123, No. 4, s. 288-301. DOI: 10.1016/j.enggeo.2011.07.011

Strength and Microstructure Properties of Cemented Paste Backfill; Effect of Class-C Fly Ash

Year 2019, Volume: 21 Issue: 61, 15 - 23, 15.01.2019

Abstract

In this
study, the effect of Class-C Fly ash (FA) as partial replacement (5-15% by
weight) to sulphide tailings on the strength and microstructure properties of
cemented paste backfill (CPB) was examined. Within this scope, CPB samples of
control were prepared at 8.5 wt.% binder dosage while the other samples
containing FA were prepared at 7.5 wt.% binder dosage. These samples were
subjected to uniaxial compressive strength (UCS) and porosity (MIP) tests.
Findings revealed that all CPB samples containing FA produced notably higher
(1.18-3.16 fold) UCSs than control samples. All CPB samples ensured the
stability criterion for backfill material (UCS≥1.0MPa), whilst, only the CPB
samples containing 15 wt.% FA exceeded the roof (ground) support criterion
(UCS≥5.0MPa). When the developments of porosity (MIP) were investigated, the
partial replacement of sulphide tailings with FA enhanced the microstructure
properties of CPB samples. These results suggest that the utilization of
Class-C Fly ash (FA) as partial replacement to sulphide tailings is highly
beneficial for the improvement of the strength, durability and microstructure
properties of CPB.

References

  • [1] European Commission, 2009. Reference document on best available techniques for management of tailings and waste-rock in mining activities, s. 427-435.
  • [2] Erçıkdı, B., Cihangir, F., Kesimal, A., Deveci, H., Eğriboyunoğlu, M., Yılmaz, K. 2017. Macun Dolgunun Çevresel Etkileri: ÇBİ Deneyimi. Uluslararası Madencilik Ve Çevre Sempozyumu (ISME 2017), 27-29 Eylül, Bodrum/Muğla, 359-375.
  • [3] Ouellet, S., Bussière, B., Aubertin, M., Benzaazoua, M. 2007. Microstructural evolution of cemented paste backfill: Mercury intrusion porosimetry test results. Cement and Concrete Research, Cilt. 37, No. 12, s. 1654-1665. DOI: 10.1016/j.cemconres.2007.08.016
  • [4] Bertrand, V.J., Monroy, M.G., Lawrence, R.W., 2000. Weathering characteristics of cemented paste backfill: mineralogy and solid phase chemistry. In Proceedings from the 5th international conference on acid rock drainage, 863-876.
  • [5] Tariq, A., Nehdi, M. 2007. Developing durable paste backfill from sulphidic tailings. Waste and Resource Management, Cilt. 160, No. 4, s. 155-166. DOI: 10.1680/warm.2007.160.4.155
  • [6] Cihangir, F., Ercikdi, B., Kesimal, A., Turan, A., Deveci, H. 2012. Utilisation of alkali-activated blast furnace slag in paste backfill of high-sulphide mill tailings: effect of binder type and dosage. Minerals Engineering, Cilt. 30, s. 33-43. DOI: 10.1016/j.mineng.2012.01.009
  • [7] Ercikdi, B., Külekci, G., Yılmaz, T. 2015. Utilization of granulated marble wastes and waste bricks as mineral admixture in cemented paste backfill of sulphide-rich tailings. Construction and Building Materials, Cilt. 93, s. 573-583. DOI: 10.1016/j.conbuildmat.2015.06.042
  • [8] Yin, S., Shao, Y., Wu, A., Wang, Y., Chen, X. 2018. Expansion and strength properties of cemented backfill using sulphidic mill tailings. Construction and Building Materials, Cilt. 165, s. 138-148. DOI: 10.1016/j.conbuildmat.2018.01.005
  • [9] Zheng, J., Guo, L., Sun, X., Li, W., Jia, Q. 2018. Study on the strength development of cemented backfill body from lead-zinc mine tailings with sulphide. Advances in Materials Science and Engineering, DOI: 10.1155/2018/7278014 (In Press).
  • [10] Xenidis, A., Mylona, E., Paspaliaris, I. 2002. Potential use of lignite fly ash for the control of acid generation from sulphidic wastes. Waste Management, Cilt. 22 No. 6, s. 631-641. DOI: 10.1016/S0956-053X(01)00053-8
  • [11] Tozsin, G., Arol, A.I., Oztas, T., Kalkan, E. 2014. Using marble wastes as a soil amendment for acidic soil neutralization. Journal of environmental management, Cilt. 133, s. 374-377. DOI: 10.1016/j.jenvman.2013.12.022
  • [12] Ercikdi, B., Cihangir, F., Kesimal, A., Deveci, H., Alp, İ. 2009. Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings. Journal of hazardous materials, Cilt. 168, No. 2-3, s. 848-856. DOI: 10.1016/j.jhazmat.2009.02.100
  • [13] Türker, P., Erdoğan, B., Katnaş, F., Yeğinobalı, A. 2009. Türkiye’deki Uçucu Küllerin Sınıflandırılması ve Özellikleri. Türkiye Çimento Müstahsilleri Birliği (TÇMB), AR-GE Enstitüsü, Ankara, s. 114.
  • [14] ASTM C618-17a, 2017. Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete. Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • [15] ASTM C39/C39M−16b, 2016. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, Annual Book of ASTM Standards, ASTM International, West Conshohocken, PA.
  • [16] ASTM D4404-10, 2010. Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry, Annual Book of ASTM Standards, American Society of Testing Material.
  • [17] IUPAC, 1972. Manual of Symbols and Terminology. Appendix 2-Part 1: Colloid and Surface Chemistry, Journal of Pure and Applied Chemistry. Cilt. 31, s. 578–593. DOI: 10.1351/pac197231040577
  • [18] Wang, X.Y., Park, K.B. 2015. Analysis of compressive strength development of concrete containing high volume fly ash. Construction and Building Materials, Cilt. 98, s. 810-819. DOI: 10.1016/j.conbuildmat.2015.08.099
  • [19] Memon, A.H., Radin, S.S., Zain, M.F.M., Trottier, J.F. 2002. Effects of mineral and chemical admixtures on high-strength concrete in seawater. Cement and Concrete Research, Cilt. 32, No. 3, s. 373-377. DOI: 10.1016/S0008-8846(01)00687-1
  • [20] Shaikh, F.U.A, Supit, S.W.M. 2015. Compressive strength and durability properties of high volume fly ash (HVFA) concretes containing ultrafine fly ash (UFFA). Construction and building materials, Cilt. 82, s. 192-205. DOI: 10.1016/j.conbuildmat.2015.02.068
  • [21] Yumlu, M. 2001. Backfill Practices at Cayeli Mine. 17th International Mining Congress and Exhibition of Turkey, 19-22 June, Ankara, 333-339.
  • [22] Belem, T., Benzaazoua, M. 2004. An overview on the use of paste backfill technology as a ground support method in cut-and-fill mines. 5th International Symposium on Ground support in Mining and Underground Construction, 28-30 September, Perth-Western Australia, 637-650.
  • [23] Yilmaz, E., Belem, T., Bussière, B., Benzaazoua, M. 2011. Relationships between microstructural properties and compressive strength of consolidated and unconsolidated cemented paste backfills. Cement and Concrete Composites, Cilt. 33, No. 6, s. 702-715. DOI: 10.1016/j.cemconcomp.2011.03.013
  • [24] Abdul-Hussain, N., Fall, M. 2011. Unsaturated hydraulic properties of cemented tailings backfill that contains sodium silicate. Engineering geology, Cilt. 123, No. 4, s. 288-301. DOI: 10.1016/j.enggeo.2011.07.011
There are 24 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Bayram Erçıkdı 0000-0003-4900-5382

Tekin Yılmaz This is me 0000-0003-3288-5192

Publication Date January 15, 2019
Published in Issue Year 2019 Volume: 21 Issue: 61

Cite

APA Erçıkdı, B., & Yılmaz, T. (2019). Çimentolu Macun Dolgunun Dayanım ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(61), 15-23.
AMA Erçıkdı B, Yılmaz T. Çimentolu Macun Dolgunun Dayanım ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi. DEUFMD. January 2019;21(61):15-23.
Chicago Erçıkdı, Bayram, and Tekin Yılmaz. “Çimentolu Macun Dolgunun Dayanım Ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, no. 61 (January 2019): 15-23.
EndNote Erçıkdı B, Yılmaz T (January 1, 2019) Çimentolu Macun Dolgunun Dayanım ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 61 15–23.
IEEE B. Erçıkdı and T. Yılmaz, “Çimentolu Macun Dolgunun Dayanım ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi”, DEUFMD, vol. 21, no. 61, pp. 15–23, 2019.
ISNAD Erçıkdı, Bayram - Yılmaz, Tekin. “Çimentolu Macun Dolgunun Dayanım Ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/61 (January 2019), 15-23.
JAMA Erçıkdı B, Yılmaz T. Çimentolu Macun Dolgunun Dayanım ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi. DEUFMD. 2019;21:15–23.
MLA Erçıkdı, Bayram and Tekin Yılmaz. “Çimentolu Macun Dolgunun Dayanım Ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 21, no. 61, 2019, pp. 15-23.
Vancouver Erçıkdı B, Yılmaz T. Çimentolu Macun Dolgunun Dayanım ve Mikroyapı Özellikleri; C-Sınıfı Uçucu Külün Etkisi. DEUFMD. 2019;21(61):15-23.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.