Research Article
BibTex RIS Cite

Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu

Year 2019, Volume: 21 Issue: 62, 323 - 330, 21.05.2019
https://doi.org/10.21205/deufmd.2019216201

Abstract

Bu
çalışmada, 0, 0.02, 0.05, 0.1 ve %0.15 ağırlık oranlarında grafen ve ultra
yüksek molekül ağırlıklı polietilen etanol içerisinde dağıtılarak grafen
takviyeli ultra yüksek molekül ağırlıklı polietilen nano-kompozit malzemeler
üretilmiştir. Ultra yüksek molekül ağırlıklı polietilen ve grafen takviyeli
kompozit malzemelerin termal performansları termogravimetrik analizler ile
tespit edilmiştir. Ultra yüksek molekül ağırlıklı polietilen ve kompozit
malzemelerin kimyasal yapısı Fourier Dönüşümlü Kızılötesi Spektroskopi ile
incelenmiştir. Bunlara ek olarak; grafen katkısının polimerin çekme
özellikleri, yüzey pürüzlülüğü, yoğunluk ve sertlik üzerine etkileri
incelenmiştir. Bu sonuçlara göre, grafen eklendikçe kompozit malzemelerin
maksimum bozunma sıcaklıkları fazla etkilenmemek ile birlikte elastisite modülü
ve sertlik artmakta, yüzey pürüzlülüğü düşmektedir. Çekme dayanımı ise
ağırlıkça %0.1 grafen katkı oranına kadar artmakta bu orandan sonra
düşmektedir.

References

  • [1] Ramazani, S. A. A., Saremi, M. G., Amoli, B. N., Izadi, H. 2012. Production and characterization of UHMWPE/fumed silica nanocomposites, Polymer Composites, Cilt: 33(10), s. 1858-1864. 10.1002/pc.22323.
  • [2] Kavesh, S., Prevorsek, D. C. 1995. Ultra high strength, high modulus polyethylene spectra fibers and composites, International Journal of Polymeric Materials, Cilt: 30(1-2), s. 15-56. Doi 10.1080/00914039508031459.
  • [3] Chanda, M. 2006. Plastics technology handbook, Taylor and Francis, Florida,
  • [4] Li, C. S., Zhan, M. S., Huang, X. C., Zhou, H. 2012. Degradation behavior of ultra-high molecular weight polyethylene fibers under artificial accelerated weathering, Polymer Testing, Cilt: 31(7), s. 938-943. 10.1016/j.polymertesting.2012.06.009.
  • [5] Kurtz, S. M. 2009. UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices, Academic Press,
  • [6] Amoli, B. M., Ramazani, S. A. A., Izadi, H. 2012. Preparation of ultrahigh-molecular-weight polyethylene/carbon nanotube nanocomposites with a Ziegler-Natta catalytic system and investigation of their thermal and mechanical properties, Journal of Applied Polymer Science, Cilt: 125, s. E453-E461. 10.1002/app.36368.
  • [7] Davim, J. P., Marques, N. 2001. Evaluation of tribological behaviour of polymeric materials for hip prostheses application, Tribology Letters, Cilt: 11(2), s. 91-94. Doi 10.1023/A:1016607400392.
  • [8] Alderson, K. L., Webber, R. S., Evans, K. E. 2000. Novel variations in the microstructure of auxetic ultra-high molecular weight polyethylene. Part 2: Mechanical properties, Polymer Engineering and Science, Cilt: 40(8), s. 1906-1914. Doi 10.1002/Pen.11322.
  • [9] Fengzhen Liu, Yunhua Wang, Keyi Li, Licheng Jiang, Xiumei Wang, Xin Shao, et al. 2015. Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites: Ball-Milling Preparation Mechanical Performance and Biocompatibility Effects, American Journal of Biomedical Science and Engineering, Cilt: 1(5), s. 51-57.
  • [10] Samad, M. A., Sinha, S. K. 2011. Dry sliding and boundary lubrication performance of a UHMWPE/CNTs nanocomposite coating on steel substrates at elevated temperatures, Wear, Cilt: 270(5-6), s. 395-402. 10.1016/j.wear.2010.11.011.
  • [11] Satyanarayana, N., Sinha, S. K., Ong, B. H. 2006. Tribology of a novel UHMWPE/PFPE dual-film coated onto Si surface, Sensors and Actuators a-Physical, Cilt: 128(1), s. 98-108. 10.1016/j.sna.2005.12.042.
  • [12] Minn, M., Sinha, S. K. 2008. DLC and UHMWPE as hard/soft composite film on Si for improved tribological performance, Surface & Coatings Technology, Cilt: 202(15), s. 3698-3708. 10.1016/j.surfcoat.2008.01.012.
  • [13] Tai, Z., Chen, Y., An, Y., Yan, X., Xue, Q. 2012. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets, Tribology Letters, Cilt: 46(1), s. 55-63.10.1115/1.4039956.
  • [14] Chen, Y. F., Qi, Y. Y., Tai, Z. X., Yan, X. B., Zhu, F. L., Xue, Q. J. 2012. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, European Polymer Journal, Cilt: 48(6), s. 1026-1033. 10.1016/j.eurpolymj.2012.03.011.
  • [15] Xie, X. L., Tang, C. Y., Chan, K. Y. Y., Wu, X. C., Tsui, C. P., Cheung, C. Y. 2003. Wear performance of ultrahigh molecular weight polyethylene/quartz composites, Biomaterials, Cilt: 24(11), s. 1889-1896. 10.1016/S0142-9612(02)00610-5.
  • [16] Gong, G. F., Yang, H. Y., Fu, X. 2004. Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding, Wear, Cilt: 256(1-2), s. 88-94. 10.1016/S0043-1648(03)00394-6.
  • [17] Plumlee, K., Schwartz, C. J. 2009. Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles, Wear, Cilt: 267(5-8), s. 710-717. 10.1016/j.wear.2008.11.028.
  • [18] Mahfuz, H., Adnan, A., Rangari, V. K., Jeelani, S. 2005. Manufacturing and characterization of carbon nanotube/polyethylene composites, International Journal of Nanoscience, Cilt: 4(01), s. 55-72. 10.1142/S0219581X05002961.
  • [19] Ruan, S., Gao, P., Yu, T. 2006. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes, Polymer, Cilt: 47(5), s. 1604-1611.10.1016/j.polymer.2006.01.020.
  • [20] Aoki, N., Akasaka, T., Watari, F., Yokoyama, A. 2007. Carbon nanotubes as scaffolds for cell culture and effect on cellular functions, Dental Materials Journal, Cilt: 26(2), s. 178-185.
  • [21] Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., Seal, S. 2011. Graphene based materials: Past, present and future, Progress in Materials Science, Cilt: 56(8), s. 1178-1271. 10.1016/j.pmatsci.2011.03.003.
  • [22] Xiong, D. S., Lin, J. M., Fan, D. L. 2006. Wear properties of nano-Al2O3/UHMWPE composites irradiated by gamma ray against a CoCrMo alloy, Biomedical Materials, Cilt: 1(3), s. 175-179. 10.1088/1748-6041/1/3/013.
  • [23] Xiong, D. S., Lin, J. M., Fan, D. L., Jin, Z. M. 2007. Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication, Journal of Materials Science-Materials in Medicine, Cilt: 18(11), s. 2131-2135. 10.1007/s10856-007-3199-y.
  • [24] Ren, X., Wang, X. Q., Sui, G., Zhong, W. H., Fuqua, M. A., Ulven, C. A. 2008. Effects of carbon nanofibers on crystalline structures and properties of ultrahigh molecular weight polyethylene blend fabricated using twin-screw extrusion, Journal of Applied Polymer Science, Cilt: 107(5), s. 2837-2845. 10.1002/app.27354.
  • [25] Xi, Y., Yamanaka, A., Bin, Y. Z., Matsuo, M. 2007. Electrical properties of segreated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites, Journal of Applied Polymer Science, Cilt: 105(5), s. 2868-2876. 10.1002/app.26282.
  • [26] Mao, H. Y., Laurent, S., Chen, W., Akhavan, O., Imani, M., Ashkarran, A. A., et al. 2013. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine, Chemical Reviews, Cilt: 113(5), s. 3407-3424. 10.1021/cr300335p.
  • [27] Bo, X. J., Zhou, M., Guo, L. P. 2017. Electrochemical sensors and biosensors based on less aggregated graphene, Biosensors & Bioelectronics, Cilt: 89, s. 167-186. 10.1016/j.bios.2016.05.002.
  • [28] Akhavan, O., Ghaderi, E., Rahighi, R. 2012. Toward Single-DNA Electrochemical Biosensing by Graphene Nanowalls, Acs Nano, Cilt: 6(4), s. 2904-2916. 10.1021/nn300261t.
  • [29] Rafiee, M. A., Rafiee, J., Wang, Z., Song, H. H., Yu, Z. Z., Koratkar, N. 2009. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, Acs Nano, Cilt: 3(12), s. 3884-3890. 10.1021/nn9010472.
  • [30] Kim, H., Abdala, A. A., Macosko, C. W. 2010. Graphene/Polymer Nanocomposites, Macromolecules, Cilt: 43(16), s. 6515-6530. 10.1021/ma100572e.
  • [31] Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S. 2011. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability, Carbon, Cilt: 49(1), s. 198-205. 10.1016/j.carbon.2010.09.004.
  • [32] Veca, L. M., Meziani, M. J., Wang, W., Wang, X., Lu, F. S., Zhang, P. Y., et al. 2009. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity, Advanced Materials, Cilt: 21(20), s. 2088-2092. 10.1002/adma.200802317.
  • [33] Pang, W. C., Ni, Z. F., Chen, G. M., Huang, G. D., Huang, H. D., Zhao, Y. W. 2015. Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites, Rsc Advances, Cilt: 5(77), s. 63063-63072. 10.1039/c5ra11826c.
  • [34] Qiu, J. J., Wang, S. R. 2011. Enhancing Polymer Performance Through Graphene Sheets, Journal of Applied Polymer Science, Cilt: 119(6), s. 3670-3674. 10.1002/app.33068.
  • [35] Yang, L., Yee, W. A., Phua, S. L., Kong, J., Ding, H., Cheah, J. W., et al. 2012. A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites, Rsc Advances, Cilt: 2(6), s. 2208-2210. 10.1039/C2RA00798C.
  • [36] Bhattacharyya, A., Chen, S., Zhu, M. 2014. Graphene reinforced ultra high molecular weight polyethylene with improved tensile strength and creep resistance properties, Express Polymer Letters, Cilt: 8(2), s. 74-84. 10.3144/expresspolymlett.2014.10.. [37] Tai, Z. X., Chen, Y. F., An, Y. F., Yan, X. B., Xue, Q. J. 2012. Tribological Behavior of UHMWPE Reinforced with Graphene Oxide Nanosheets, Tribology Letters, Cilt: 46(1), s. 55-63. 10.1007/s11249-012-9919-6.
  • [38] Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F., Xue, Q. 2012. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, European Polymer Journal, Cilt: 48(6), s. 1026-1033. 10.1016/j.eurpolymj.2012.03.011.
  • [39] Suñer, S., Joffe, R., Tipper, J., Emami, N. 2015. Ultra high molecular weight polyethylene/graphene oxide nanocomposites: Thermal, mechanical and wettability characterisation, Composites Part B: Engineering, Cilt: 78, s. 185-191. 10.1016/j.compositesb.2015.03.075.
  • [40] Lahiri, D., Hec, F., Thiesse, M., Durygin, A., Zhang, C., Agarwal, A. 2014. Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites, Tribology International, Cilt: 70, s. 165-169. 10.1016/j.triboint.2013.10.012.
  • [41] Berman, D., Erdemir, A., Sumant, A. V. 2014. Graphene: a new emerging lubricant, Materials Today, Cilt: 17(1), s. 31-42. 10.1016/j.mattod.2013.12.003

Development and Characterization of Graphite Nanoplate Reinforced Ultra High Molecular Weight Polyethylene Based Nano-Composite Materials

Year 2019, Volume: 21 Issue: 62, 323 - 330, 21.05.2019
https://doi.org/10.21205/deufmd.2019216201

Abstract



In this study, graphite filled
ultra high molecular weight polyethylene nano-composite materials were
produced by dispersing 0, 0.02, 0.05, 0.1 and 0.15wt % graphite (Gr) and
ultra high molecular weight polyethylene(UHMWPE) in ethanol. The thermal
performances of UHMWPE and Gr filled composite materials were determined by
thermogravimetric analysis. The chemical structure of UHMWPE and composite
materials was investigated by Fourier Transform Infrared Spectroscopy.
Additionally; the effects of Gr on the tensile properties, surface roughness,
density and hardness of polymer were investigated. According to these
results, as the graphite is added, the maximum degradation temperatures of
the composite materials are not affected much, and the modulus of elasticity
and hardness increase and the surface roughness decreases. The tensile
strength increased with the addition of Gr up to 0.1wt %, but decreased with
the further increase of Gr weight fraction.


References

  • [1] Ramazani, S. A. A., Saremi, M. G., Amoli, B. N., Izadi, H. 2012. Production and characterization of UHMWPE/fumed silica nanocomposites, Polymer Composites, Cilt: 33(10), s. 1858-1864. 10.1002/pc.22323.
  • [2] Kavesh, S., Prevorsek, D. C. 1995. Ultra high strength, high modulus polyethylene spectra fibers and composites, International Journal of Polymeric Materials, Cilt: 30(1-2), s. 15-56. Doi 10.1080/00914039508031459.
  • [3] Chanda, M. 2006. Plastics technology handbook, Taylor and Francis, Florida,
  • [4] Li, C. S., Zhan, M. S., Huang, X. C., Zhou, H. 2012. Degradation behavior of ultra-high molecular weight polyethylene fibers under artificial accelerated weathering, Polymer Testing, Cilt: 31(7), s. 938-943. 10.1016/j.polymertesting.2012.06.009.
  • [5] Kurtz, S. M. 2009. UHMWPE biomaterials handbook: ultra high molecular weight polyethylene in total joint replacement and medical devices, Academic Press,
  • [6] Amoli, B. M., Ramazani, S. A. A., Izadi, H. 2012. Preparation of ultrahigh-molecular-weight polyethylene/carbon nanotube nanocomposites with a Ziegler-Natta catalytic system and investigation of their thermal and mechanical properties, Journal of Applied Polymer Science, Cilt: 125, s. E453-E461. 10.1002/app.36368.
  • [7] Davim, J. P., Marques, N. 2001. Evaluation of tribological behaviour of polymeric materials for hip prostheses application, Tribology Letters, Cilt: 11(2), s. 91-94. Doi 10.1023/A:1016607400392.
  • [8] Alderson, K. L., Webber, R. S., Evans, K. E. 2000. Novel variations in the microstructure of auxetic ultra-high molecular weight polyethylene. Part 2: Mechanical properties, Polymer Engineering and Science, Cilt: 40(8), s. 1906-1914. Doi 10.1002/Pen.11322.
  • [9] Fengzhen Liu, Yunhua Wang, Keyi Li, Licheng Jiang, Xiumei Wang, Xin Shao, et al. 2015. Graphene Oxide/Ultrahigh Molecular Weight Polyethylene Composites: Ball-Milling Preparation Mechanical Performance and Biocompatibility Effects, American Journal of Biomedical Science and Engineering, Cilt: 1(5), s. 51-57.
  • [10] Samad, M. A., Sinha, S. K. 2011. Dry sliding and boundary lubrication performance of a UHMWPE/CNTs nanocomposite coating on steel substrates at elevated temperatures, Wear, Cilt: 270(5-6), s. 395-402. 10.1016/j.wear.2010.11.011.
  • [11] Satyanarayana, N., Sinha, S. K., Ong, B. H. 2006. Tribology of a novel UHMWPE/PFPE dual-film coated onto Si surface, Sensors and Actuators a-Physical, Cilt: 128(1), s. 98-108. 10.1016/j.sna.2005.12.042.
  • [12] Minn, M., Sinha, S. K. 2008. DLC and UHMWPE as hard/soft composite film on Si for improved tribological performance, Surface & Coatings Technology, Cilt: 202(15), s. 3698-3708. 10.1016/j.surfcoat.2008.01.012.
  • [13] Tai, Z., Chen, Y., An, Y., Yan, X., Xue, Q. 2012. Tribological behavior of UHMWPE reinforced with graphene oxide nanosheets, Tribology Letters, Cilt: 46(1), s. 55-63.10.1115/1.4039956.
  • [14] Chen, Y. F., Qi, Y. Y., Tai, Z. X., Yan, X. B., Zhu, F. L., Xue, Q. J. 2012. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, European Polymer Journal, Cilt: 48(6), s. 1026-1033. 10.1016/j.eurpolymj.2012.03.011.
  • [15] Xie, X. L., Tang, C. Y., Chan, K. Y. Y., Wu, X. C., Tsui, C. P., Cheung, C. Y. 2003. Wear performance of ultrahigh molecular weight polyethylene/quartz composites, Biomaterials, Cilt: 24(11), s. 1889-1896. 10.1016/S0142-9612(02)00610-5.
  • [16] Gong, G. F., Yang, H. Y., Fu, X. 2004. Tribological properties of kaolin filled UHMWPE composites in unlubricated sliding, Wear, Cilt: 256(1-2), s. 88-94. 10.1016/S0043-1648(03)00394-6.
  • [17] Plumlee, K., Schwartz, C. J. 2009. Improved wear resistance of orthopaedic UHMWPE by reinforcement with zirconium particles, Wear, Cilt: 267(5-8), s. 710-717. 10.1016/j.wear.2008.11.028.
  • [18] Mahfuz, H., Adnan, A., Rangari, V. K., Jeelani, S. 2005. Manufacturing and characterization of carbon nanotube/polyethylene composites, International Journal of Nanoscience, Cilt: 4(01), s. 55-72. 10.1142/S0219581X05002961.
  • [19] Ruan, S., Gao, P., Yu, T. 2006. Ultra-strong gel-spun UHMWPE fibers reinforced using multiwalled carbon nanotubes, Polymer, Cilt: 47(5), s. 1604-1611.10.1016/j.polymer.2006.01.020.
  • [20] Aoki, N., Akasaka, T., Watari, F., Yokoyama, A. 2007. Carbon nanotubes as scaffolds for cell culture and effect on cellular functions, Dental Materials Journal, Cilt: 26(2), s. 178-185.
  • [21] Singh, V., Joung, D., Zhai, L., Das, S., Khondaker, S. I., Seal, S. 2011. Graphene based materials: Past, present and future, Progress in Materials Science, Cilt: 56(8), s. 1178-1271. 10.1016/j.pmatsci.2011.03.003.
  • [22] Xiong, D. S., Lin, J. M., Fan, D. L. 2006. Wear properties of nano-Al2O3/UHMWPE composites irradiated by gamma ray against a CoCrMo alloy, Biomedical Materials, Cilt: 1(3), s. 175-179. 10.1088/1748-6041/1/3/013.
  • [23] Xiong, D. S., Lin, J. M., Fan, D. L., Jin, Z. M. 2007. Wear of nano-TiO2/UHMWPE composites radiated by gamma ray under physiological saline water lubrication, Journal of Materials Science-Materials in Medicine, Cilt: 18(11), s. 2131-2135. 10.1007/s10856-007-3199-y.
  • [24] Ren, X., Wang, X. Q., Sui, G., Zhong, W. H., Fuqua, M. A., Ulven, C. A. 2008. Effects of carbon nanofibers on crystalline structures and properties of ultrahigh molecular weight polyethylene blend fabricated using twin-screw extrusion, Journal of Applied Polymer Science, Cilt: 107(5), s. 2837-2845. 10.1002/app.27354.
  • [25] Xi, Y., Yamanaka, A., Bin, Y. Z., Matsuo, M. 2007. Electrical properties of segreated ultrahigh molecular weight polyethylene/multiwalled carbon nanotube composites, Journal of Applied Polymer Science, Cilt: 105(5), s. 2868-2876. 10.1002/app.26282.
  • [26] Mao, H. Y., Laurent, S., Chen, W., Akhavan, O., Imani, M., Ashkarran, A. A., et al. 2013. Graphene: Promises, Facts, Opportunities, and Challenges in Nanomedicine, Chemical Reviews, Cilt: 113(5), s. 3407-3424. 10.1021/cr300335p.
  • [27] Bo, X. J., Zhou, M., Guo, L. P. 2017. Electrochemical sensors and biosensors based on less aggregated graphene, Biosensors & Bioelectronics, Cilt: 89, s. 167-186. 10.1016/j.bios.2016.05.002.
  • [28] Akhavan, O., Ghaderi, E., Rahighi, R. 2012. Toward Single-DNA Electrochemical Biosensing by Graphene Nanowalls, Acs Nano, Cilt: 6(4), s. 2904-2916. 10.1021/nn300261t.
  • [29] Rafiee, M. A., Rafiee, J., Wang, Z., Song, H. H., Yu, Z. Z., Koratkar, N. 2009. Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, Acs Nano, Cilt: 3(12), s. 3884-3890. 10.1021/nn9010472.
  • [30] Kim, H., Abdala, A. A., Macosko, C. W. 2010. Graphene/Polymer Nanocomposites, Macromolecules, Cilt: 43(16), s. 6515-6530. 10.1021/ma100572e.
  • [31] Vadukumpully, S., Paul, J., Mahanta, N., Valiyaveettil, S. 2011. Flexible conductive graphene/poly(vinyl chloride) composite thin films with high mechanical strength and thermal stability, Carbon, Cilt: 49(1), s. 198-205. 10.1016/j.carbon.2010.09.004.
  • [32] Veca, L. M., Meziani, M. J., Wang, W., Wang, X., Lu, F. S., Zhang, P. Y., et al. 2009. Carbon Nanosheets for Polymeric Nanocomposites with High Thermal Conductivity, Advanced Materials, Cilt: 21(20), s. 2088-2092. 10.1002/adma.200802317.
  • [33] Pang, W. C., Ni, Z. F., Chen, G. M., Huang, G. D., Huang, H. D., Zhao, Y. W. 2015. Mechanical and thermal properties of graphene oxide/ultrahigh molecular weight polyethylene nanocomposites, Rsc Advances, Cilt: 5(77), s. 63063-63072. 10.1039/c5ra11826c.
  • [34] Qiu, J. J., Wang, S. R. 2011. Enhancing Polymer Performance Through Graphene Sheets, Journal of Applied Polymer Science, Cilt: 119(6), s. 3670-3674. 10.1002/app.33068.
  • [35] Yang, L., Yee, W. A., Phua, S. L., Kong, J., Ding, H., Cheah, J. W., et al. 2012. A high throughput method for preparation of highly conductive functionalized graphene and conductive polymer nanocomposites, Rsc Advances, Cilt: 2(6), s. 2208-2210. 10.1039/C2RA00798C.
  • [36] Bhattacharyya, A., Chen, S., Zhu, M. 2014. Graphene reinforced ultra high molecular weight polyethylene with improved tensile strength and creep resistance properties, Express Polymer Letters, Cilt: 8(2), s. 74-84. 10.3144/expresspolymlett.2014.10.. [37] Tai, Z. X., Chen, Y. F., An, Y. F., Yan, X. B., Xue, Q. J. 2012. Tribological Behavior of UHMWPE Reinforced with Graphene Oxide Nanosheets, Tribology Letters, Cilt: 46(1), s. 55-63. 10.1007/s11249-012-9919-6.
  • [38] Chen, Y., Qi, Y., Tai, Z., Yan, X., Zhu, F., Xue, Q. 2012. Preparation, mechanical properties and biocompatibility of graphene oxide/ultrahigh molecular weight polyethylene composites, European Polymer Journal, Cilt: 48(6), s. 1026-1033. 10.1016/j.eurpolymj.2012.03.011.
  • [39] Suñer, S., Joffe, R., Tipper, J., Emami, N. 2015. Ultra high molecular weight polyethylene/graphene oxide nanocomposites: Thermal, mechanical and wettability characterisation, Composites Part B: Engineering, Cilt: 78, s. 185-191. 10.1016/j.compositesb.2015.03.075.
  • [40] Lahiri, D., Hec, F., Thiesse, M., Durygin, A., Zhang, C., Agarwal, A. 2014. Nanotribological behavior of graphene nanoplatelet reinforced ultra high molecular weight polyethylene composites, Tribology International, Cilt: 70, s. 165-169. 10.1016/j.triboint.2013.10.012.
  • [41] Berman, D., Erdemir, A., Sumant, A. V. 2014. Graphene: a new emerging lubricant, Materials Today, Cilt: 17(1), s. 31-42. 10.1016/j.mattod.2013.12.003
There are 40 citations in total.

Details

Primary Language Turkish
Journal Section Articles
Authors

Lütfiye Altay This is me 0000-0003-4946-3615

Metehan Atagür 0000-0002-1916-457X

Müslüm Erbektaş This is me 0000-0003-3375-6093

Mehmet Sarıkanat 0000-0003-1094-2272

Publication Date May 21, 2019
Published in Issue Year 2019 Volume: 21 Issue: 62

Cite

APA Altay, L., Atagür, M., Erbektaş, M., Sarıkanat, M. (2019). Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(62), 323-330. https://doi.org/10.21205/deufmd.2019216201
AMA Altay L, Atagür M, Erbektaş M, Sarıkanat M. Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu. DEUFMD. May 2019;21(62):323-330. doi:10.21205/deufmd.2019216201
Chicago Altay, Lütfiye, Metehan Atagür, Müslüm Erbektaş, and Mehmet Sarıkanat. “Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, no. 62 (May 2019): 323-30. https://doi.org/10.21205/deufmd.2019216201.
EndNote Altay L, Atagür M, Erbektaş M, Sarıkanat M (May 1, 2019) Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 62 323–330.
IEEE L. Altay, M. Atagür, M. Erbektaş, and M. Sarıkanat, “Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu”, DEUFMD, vol. 21, no. 62, pp. 323–330, 2019, doi: 10.21205/deufmd.2019216201.
ISNAD Altay, Lütfiye et al. “Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/62 (May 2019), 323-330. https://doi.org/10.21205/deufmd.2019216201.
JAMA Altay L, Atagür M, Erbektaş M, Sarıkanat M. Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu. DEUFMD. 2019;21:323–330.
MLA Altay, Lütfiye et al. “Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi Ve Karakterizasyonu”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 21, no. 62, 2019, pp. 323-30, doi:10.21205/deufmd.2019216201.
Vancouver Altay L, Atagür M, Erbektaş M, Sarıkanat M. Grafen Nanoplaka Takviyeli Ultra Yüksek Molekül Ağırlıklı Polietilen Tabanlı Nano-Kompozit Malzeme Geliştirilmesi ve Karakterizasyonu. DEUFMD. 2019;21(62):323-30.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.