Research Article
BibTex RIS Cite

Fotovoltaik ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı ve Satış Tarifesinin Etkileri

Year 2019, Volume: 21 Issue: 63, 879 - 895, 20.09.2019

Abstract

Artan enerji ihtiyacı ve azalan
fosil kaynaklı yakıtların azalması yenilenebilir enerji kaynaklarına olan
ilgiyi artırmıştır. Bu kaynaklardan fotovoltaik (PV) ve rüzgâr sistemleri ön
plana çıkmaktadır. Bu çalışmada farklı indirim oranları ve şebeke tarife fiyatları
kullanılarak şebekeye bağlı hibrit PV/rüzgar sistem kapasiteleri en düşük birim
enerji maliyetini verecek şekilde optimizasyonla belirlenmiştir. Birim enerji
maliyetinin ve sistem kapasitelerinin yanı sıra, sistemin ürettiği fazla
enerji, talebin karşılanma oranı, net bugünkü değer (NPV), geri ödeme süresi ve
önlenen CO2 salınım miktarları hesaplanmıştır. Çalışmada benzetimi
yapılan durumlardan en yüksek NPV değeri olan 4.3 milyon USD ve en düşük birim
enerji maliyeti olan 108,84 USD/MWh değerlerini %8 indirim oranında ve %40
oranındaki çift-yönlü tarifede bulunmuştur. Bu sonuçlara ideal 2572 kW PV ve
900 kW rüzgar türbin kapasitelerinde ulaşılmıştır. Ayrıca çalışmanın sonuçları,
indirim oranının %4’ten %12 çıkmasının en düşük enerji maliyetini tutturabilmek
için PV ve türbin kapasitelerini %20’ye kadar düşürmek gerektiğini ve bu düşüşe
rağmen birim enerji maliyetinin ve NPV değerinin sırasıyla %12 ve %75
oranlarında düşebileceğini göstermiştir. Şebekeyle enerji transferinde
satış/alış oranının da %0’dan %40’a çıkmasının PV ve türbin kapasitelerini
sırasıyla %58 ve %50 artıracağını ve birim enerji maliyetlerini %5
azaltacağını, NPV değerini de %57’ye kadar artıracağını öngörülmüştür. Buna
göre, indirim oranının yüksek olduğu ülkelerde yenilenebilir enerji
yatırımlarının yaygınlaştırılması için indirim oranının düşük olduğu ülkelere
nazaran teşviklerin daha yüksek olması gerektiğini ve bu teşviğin yüksek oranlı
çift-yönlü tarifelerle yapılabileceği ortaya çıkmaktadır.

References

  • [1] Çıtıroğlu, A. 2000. Güneş Enerjisinden Yararlanarak Elektrik Üretimi, Mühendis ve Makine, Cilt. 485, s. 1-5.
  • [2] Karaca, C. 2012. Güneş Ve Rüzgar Enerjisinden Elektrik Enerjisi Üretimi Sistemi Tasarımı.Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 114s, Konya, Türkiye.
  • [3] Ellabban, O., Abu-Rub, H. and Blaabjerg, F. 2014. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology, Renewable and Sustainable Energy Reviews, Cilt. 39, s. 748-764. DOI: 10.1016/j.rser.2014.07.113.
  • [4] Siddaiah, R. and Saini, R.P. 2016. A Review on Planning, Configurations, Modeling and Optimization Techniques of Hybrid Renewable Energy Systems for Off Grid Applications, Renewable and Sustainable Energy Reviews, Cilt. 58, s. 376-396. DOI: 10.1016/j.rser.2015.12.281.
  • [5] Bajpai, P. and Dash, V. 2012. Hybrid Renewable Energy Systems for Power Generation in Stand-Alone Applications: A Review, Renewable and Sustainable Energy Reviews, Cilt. 16, s. 2926-2939. DOI: 10.1016/j.rser.2012.02.009.
  • [6] Mahesh, A. and Sandhu, K.S. 2015. Hybrid Wind/Photovoltaic Energy System Developments: Critical Review and Findings, Renewable and Sustainable Energy Reviews, Cilt. 52, s. 1135-1147. DOI: 10.1016/j.rser.2015.08.008.
  • [7] Tezer, T., Yaman, R. and Yaman, G. 2017. Evaluation of Approaches Used for Optimization of Stand-Alone Hybrid Renewable Energy Systems, Renewable and Sustainable Energy Reviews, Cilt. 73, s. 840-853. DOI: 10.1016/j.rser.2017.01.118.
  • [8] Khan, F.A., Pal, N. and Saeed, S.H. 2018. Review of Solar Photovoltaic and Wind Hybrid Energy Systems for Sizing Strategies Optimization Techniques and Cost Analysis Methodologies, Renewable and Sustainable Energy Reviews, Cilt. 92, s. 937-947. DOI: 10.1016/j.rser.2018.04.107.
  • [9] Khare, V., Nema, S. and Baredar, P. 2016. Solar–Wind Hybrid Renewable Energy System: A Review, Renewable and Sustainable Energy Reviews, Cilt. 58, s. 23-33. DOI: 10.1016/j.rser.2015.12.223.
  • [10] Upadhyay, S. and Sharma, M.P. 2014. A Review on Configurations, Control and Sizing Methodologies of Hybrid Energy Systems, Renewable and Sustainable Energy Reviews, Cilt. 38, s. 47-63. DOI: 10.1016/j.rser.2014.05.057.
  • [11] Moghavvemi, M., Ismail, M.S., Murali, B., Yang, S.S., Attaran, A. and Moghavvemi, S. 2013. Development and Optimization of a Pv/Diesel Hybrid Supply System for Remote Controlled Commercial Large Scale Fm Transmitters, Energy Conversion and Management, Cilt. 75, s. 542-551. DOI: 10.1016/j.enconman.2013.07.011.
  • [12] Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J.T. and Westfall, L. 2016. International Energy Outlook 2016 with Projections to 2040. USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis,
  • [13] Borowy, B.S. and Salameh, Z.M. 1996. Methodology for Optimally Sizing the Combination of a Battery Bank and Pv Array in a Wind/Pv Hybrid System, IEEE Transactions on Energy Conversion, Cilt. 11, s. 367-375. DOI: 10.1109/60.507648.
  • [14] Shrestha, G.B. and Goel, L. 1998. A Study on Optimal Sizing of Stand-Alone Photovoltaic Stations, IEEE Transactions on Energy Conversion, Cilt. 13, s. 373-378. DOI: 10.1109/60.736323.
  • [15] Anoune, K., Bouya, M., Astito, A. and Abdellah, A.B. 2018. Sizing Methods and Optimization Techniques for Pv-Wind Based Hybrid Renewable Energy System: A Review, Renewable and Sustainable Energy Reviews, Cilt. 93, s. 652-673. DOI: 10.1016/j.rser.2018.05.032.
  • [16] Celik, A.N. 2003. Techno-Economic Analysis of Autonomous Pv-Wind Hybrid Energy Systems Using Different Sizing Methods, Energy Conversion and Management, Cilt. 44, s. 1951-1968. DOI: 10.1016/S0196-8904(02)00223-6.
  • [17] González, A., Riba, J.-R., Rius, A. and Puig, R. 2015. Optimal Sizing of a Hybrid Grid-Connected Photovoltaic and Wind Power System, Applied Energy, Cilt. 154, s. 752-762. DOI: 10.1016/j.apenergy.2015.04.105.
  • [18] Kellogg, W., Nehrir, M., Venkataramanan, G. and Gerez, V. 1998. Generation Unit Sizing and Cost Analysis for Stand-Alone Wind, Photovoltaic, and Hybrid Wind/Pv Systems, IEEE Transactions on Energy Conversion, Cilt. 13, s. 70-75. DOI: 10.1109/60.658206.
  • [19] Kıymaz, Ö. 2015. Rüzgar Santrallerinin Melez Elektrik Sistemine Entegrasyonu Ve Ekonomik Analizi.Başkent Üniversitesi Fen Bilimleri Enstitüsü, 114s, Ankara.
  • [20] Koutroulis, E., Kolokotsa, D., Potirakis, A. and Kalaitzakis, K. 2006. Methodology for Optimal Sizing of Stand-Alone Photovoltaic/Wind-Generator Systems Using Genetic Algorithms, Solar Energy, Cilt. 80, s. 1072-1088. DOI: 10.1016/j.solener.2005.11.002.
  • [21] Yang, H., Wei, Z. and Chengzhi, L. 2009. Optimal Design and Techno-Economic Analysis of a Hybrid Solar–Wind Power Generation System, Applied Energy, Cilt. 86, s. 163-169. DOI: 10.1016/j.apenergy.2008.03.008.
  • [22] Maleki, A. and Pourfayaz, F. 2015. Optimal Sizing of Autonomous Hybrid Photovoltaic/Wind/Battery Power System with Lpsp Technology by Using Evolutionary Algorithms, Solar Energy, Cilt. 115, s. 471-483. DOI: 10.1016/j.solener.2015.03.004.
  • [23] Cooper, P. 1969. The Absorption of Radiation in Solar Stills, Solar Energy, Cilt. 12, s. 333-346.
  • [24] Duffie, J.A. and Beckman, W.A. 2013. Solar Engineering of Thermal Processes. John Wiley & Sons, New Jersey.
  • [25] AXITECH 2016. Specifications of Axitec Ac-250m/156-60s. http://www.axitecsolar.com/data/document_files/DB_60zlg_mono_premium_MiA_US.pdf (Erişim Tarihi: January 15).
  • [26] Vestas 2016. Specifications of Vestas V90-1.8 Mw. http://www.esi-africa.com/wp-content/uploads/i/Product_BrochureV90_1_8MW_US.pdf (Erişim Tarihi: 11.09.2018).
  • [27] Siemens 2016. Specifications of Siemens Swt-2.3-101 Wind Turbine. http://www.siemens.com/content/dam/internet/siemens-com/global/market-specific-solutions/wind/data_sheets/data-sheet-wind-turbine-swt-2.3-101.pdf (Erişim Tarihi: 11.09.2018).
  • [28] Northel 2018. Specifications of Northel Poyra P36/300 Wind Turbine. http://www.northel.com.tr/products-pdf/300.pdf (Erişim Tarihi: 11.09.2018).
  • [29] Johnson, G.L. 2006. Wind Energy Systems. Citeseer, Manhattan, KS.
  • [30] Justus, C. and Mikhail, A. 1976. Height Variation of Wind Speed and Wind Distributions Statistics, Geophysical Research Letters, Cilt. 3, s. 261-264. DOI: 10.1029/GL003i005p00261.
  • [31] Mikhail, A. 1985. Height Extrapolation of Wind Data, Journal of Solar Energy Engineering, Cilt. 107, s. 10-14. DOI: 10.1115/1.3267645.
  • [32] Manwell, J.F., McGowan, J.G. and Rogers, A.L. 2010. Wind Energy Explained: Theory, Design and Application. John Wiley & Sons.
  • [33] Benseman, R. and Cook, F. 1969. Solar Radiation in New Zealand-Standard Year and Radiation on Inclined Slopes, New Zealand Journal of Science, Cilt. 12, s. 696.
  • [34] Andersen, B., Eidorff, S., Lund, H., Pedersen, E., Rosenorn, S. and Valbjorn, O. 1977. Meteorological Data for Design of Building and Installation: A Reference Year (Extract) Contract No.: 66,
  • [35] Lund, H. and Eidorff, E. 1981. Selection Methods for Production of Test Reference Years. Office for Official Publications of the European Communities,
  • [36] Hall, I.J., Prairie, R., Anderson, H. and Boes, E. 1978. Generation of a Typical Meteorological Year. Sandia Labs., Albuquerque, NM (USA),
  • [37] Remund, J., Müller, S., Kunz, S., Huguenin-Landl, B., Studer, C., Klauser, D., Schilter, C. and Lehnherr, R. 2013. Meteonorm Global Meteorological Database. Version 7.
  • [38] Sajed Sadati, S.M., Jahani, E., Taylan, O. and Baker, D.K. 2018. Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data, Journal of Solar Energy Engineering, Cilt. 140, s. 011006-011012. DOI: 10.1115/1.4038466.
  • [39] The National Renewable Energy Laboratory 2016. U.S. Department of Energy: Distributed Generation Renewable Energy Estimate of Costs. https://www.nrel.gov/analysis/tech-lcoe-re-cost-est.html (Erişim Tarihi: 12 Mart 2019).
  • [40] Ilas, A., Ralon, P., Rodriguez, A. and Taylor, M. 2018. Renewable Power Generation Costs in 2017. International Renewable Energy Agency, Masdar City, UAE.
  • [41] Lazard 2017. Lazard’s Levelized Cost of Energy Analysis–Version 11.0. Lazard, New York.
  • [42] Al-Ghussain, L., Taylan, O. and Fahrioglu, M. 2018. Sizing of a Photovoltaic-Wind-Oil Shale Hybrid System: Case Analysis in Jordan, Journal of Solar Energy Engineering, Cilt. 140, s. 011002-011002-011012. DOI: 10.1115/1.4038048.
  • [43] Finance, B.N.E. 2014. Turkey’s Changing Power Markets. Bloomberg,
  • [44] Kıb-Tek 2018. Kıbrıs Türk Elektrik Kurumu-Tarifeler. http://www.kibtek.com/tarifeler/ (Erişim Tarihi: 15.01.2018).
  • [45] Lasdon, L.S., Fox, R.L. and Ratner, M.W. 1974. Nonlinear Optimization Using the Generalized Reduced Gradient Method, Revue française d'automatique, informatique, recherche opérationnelle Recherche opérationnelle, Cilt. 8, s. 73-103.

Sizing of Photovoltaic and Wind Energy Systems by Techno-Economic Analysis: Effects of Discount Rate and Feed-in-tariff

Year 2019, Volume: 21 Issue: 63, 879 - 895, 20.09.2019

Abstract




Increasing energy demand
and depleting fossil fuels have increased the interest in renewable energy systems.
Photovoltaic (PV) and wind systems are at the forefront of these systems.
In this study,
grid-connected hybrid PV/wind system capacities are optimized with the lowest
cost of energy at different discount rates and feed-in-tariffs. In addition
to the cost of energy and system capacities, produced excess energy, the ratio
of the energy demand by the hybrid system, net present value (NPV), payback
period and avoided CO2 emissions are calculated. The highest NPV value of 4.3 million USD and the lowest
cost of energy of 108.84 USD/MWh are found at the discount rate of 8% and
feed-in-tariff/grid tariff ratio of 40% using PV and wind capacities of 2572
and 900 kW, respectively.
Moreover, the results show that when the
discount rate increases from 4% to 12%, the PV and turbine capacities should
be reduced by up to 20% to keep the lowest cost of energy cost. As a result of this capacity change, the cost of energy is
increased by 12%, and NPV is decreased by 75%. Moreover, increasing the
feed-in-tariff/grid tariff ratio from 0% to 40% increases the PV and turbine
capacities by 58% and 50%, respectively, decreases the cost of energy by 5%
and increases NPV by 57%.
In conclusion, it is found that renewable
energy incentives should be higher in countries with high discount rates than
the ones with low discount rates to increase the renewable energy
investments, and this incentive can be made with higher feed-in-tariffs.





References

  • [1] Çıtıroğlu, A. 2000. Güneş Enerjisinden Yararlanarak Elektrik Üretimi, Mühendis ve Makine, Cilt. 485, s. 1-5.
  • [2] Karaca, C. 2012. Güneş Ve Rüzgar Enerjisinden Elektrik Enerjisi Üretimi Sistemi Tasarımı.Selçuk Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 114s, Konya, Türkiye.
  • [3] Ellabban, O., Abu-Rub, H. and Blaabjerg, F. 2014. Renewable Energy Resources: Current Status, Future Prospects and Their Enabling Technology, Renewable and Sustainable Energy Reviews, Cilt. 39, s. 748-764. DOI: 10.1016/j.rser.2014.07.113.
  • [4] Siddaiah, R. and Saini, R.P. 2016. A Review on Planning, Configurations, Modeling and Optimization Techniques of Hybrid Renewable Energy Systems for Off Grid Applications, Renewable and Sustainable Energy Reviews, Cilt. 58, s. 376-396. DOI: 10.1016/j.rser.2015.12.281.
  • [5] Bajpai, P. and Dash, V. 2012. Hybrid Renewable Energy Systems for Power Generation in Stand-Alone Applications: A Review, Renewable and Sustainable Energy Reviews, Cilt. 16, s. 2926-2939. DOI: 10.1016/j.rser.2012.02.009.
  • [6] Mahesh, A. and Sandhu, K.S. 2015. Hybrid Wind/Photovoltaic Energy System Developments: Critical Review and Findings, Renewable and Sustainable Energy Reviews, Cilt. 52, s. 1135-1147. DOI: 10.1016/j.rser.2015.08.008.
  • [7] Tezer, T., Yaman, R. and Yaman, G. 2017. Evaluation of Approaches Used for Optimization of Stand-Alone Hybrid Renewable Energy Systems, Renewable and Sustainable Energy Reviews, Cilt. 73, s. 840-853. DOI: 10.1016/j.rser.2017.01.118.
  • [8] Khan, F.A., Pal, N. and Saeed, S.H. 2018. Review of Solar Photovoltaic and Wind Hybrid Energy Systems for Sizing Strategies Optimization Techniques and Cost Analysis Methodologies, Renewable and Sustainable Energy Reviews, Cilt. 92, s. 937-947. DOI: 10.1016/j.rser.2018.04.107.
  • [9] Khare, V., Nema, S. and Baredar, P. 2016. Solar–Wind Hybrid Renewable Energy System: A Review, Renewable and Sustainable Energy Reviews, Cilt. 58, s. 23-33. DOI: 10.1016/j.rser.2015.12.223.
  • [10] Upadhyay, S. and Sharma, M.P. 2014. A Review on Configurations, Control and Sizing Methodologies of Hybrid Energy Systems, Renewable and Sustainable Energy Reviews, Cilt. 38, s. 47-63. DOI: 10.1016/j.rser.2014.05.057.
  • [11] Moghavvemi, M., Ismail, M.S., Murali, B., Yang, S.S., Attaran, A. and Moghavvemi, S. 2013. Development and Optimization of a Pv/Diesel Hybrid Supply System for Remote Controlled Commercial Large Scale Fm Transmitters, Energy Conversion and Management, Cilt. 75, s. 542-551. DOI: 10.1016/j.enconman.2013.07.011.
  • [12] Conti, J., Holtberg, P., Diefenderfer, J., LaRose, A., Turnure, J.T. and Westfall, L. 2016. International Energy Outlook 2016 with Projections to 2040. USDOE Energy Information Administration (EIA), Washington, DC (United States). Office of Energy Analysis,
  • [13] Borowy, B.S. and Salameh, Z.M. 1996. Methodology for Optimally Sizing the Combination of a Battery Bank and Pv Array in a Wind/Pv Hybrid System, IEEE Transactions on Energy Conversion, Cilt. 11, s. 367-375. DOI: 10.1109/60.507648.
  • [14] Shrestha, G.B. and Goel, L. 1998. A Study on Optimal Sizing of Stand-Alone Photovoltaic Stations, IEEE Transactions on Energy Conversion, Cilt. 13, s. 373-378. DOI: 10.1109/60.736323.
  • [15] Anoune, K., Bouya, M., Astito, A. and Abdellah, A.B. 2018. Sizing Methods and Optimization Techniques for Pv-Wind Based Hybrid Renewable Energy System: A Review, Renewable and Sustainable Energy Reviews, Cilt. 93, s. 652-673. DOI: 10.1016/j.rser.2018.05.032.
  • [16] Celik, A.N. 2003. Techno-Economic Analysis of Autonomous Pv-Wind Hybrid Energy Systems Using Different Sizing Methods, Energy Conversion and Management, Cilt. 44, s. 1951-1968. DOI: 10.1016/S0196-8904(02)00223-6.
  • [17] González, A., Riba, J.-R., Rius, A. and Puig, R. 2015. Optimal Sizing of a Hybrid Grid-Connected Photovoltaic and Wind Power System, Applied Energy, Cilt. 154, s. 752-762. DOI: 10.1016/j.apenergy.2015.04.105.
  • [18] Kellogg, W., Nehrir, M., Venkataramanan, G. and Gerez, V. 1998. Generation Unit Sizing and Cost Analysis for Stand-Alone Wind, Photovoltaic, and Hybrid Wind/Pv Systems, IEEE Transactions on Energy Conversion, Cilt. 13, s. 70-75. DOI: 10.1109/60.658206.
  • [19] Kıymaz, Ö. 2015. Rüzgar Santrallerinin Melez Elektrik Sistemine Entegrasyonu Ve Ekonomik Analizi.Başkent Üniversitesi Fen Bilimleri Enstitüsü, 114s, Ankara.
  • [20] Koutroulis, E., Kolokotsa, D., Potirakis, A. and Kalaitzakis, K. 2006. Methodology for Optimal Sizing of Stand-Alone Photovoltaic/Wind-Generator Systems Using Genetic Algorithms, Solar Energy, Cilt. 80, s. 1072-1088. DOI: 10.1016/j.solener.2005.11.002.
  • [21] Yang, H., Wei, Z. and Chengzhi, L. 2009. Optimal Design and Techno-Economic Analysis of a Hybrid Solar–Wind Power Generation System, Applied Energy, Cilt. 86, s. 163-169. DOI: 10.1016/j.apenergy.2008.03.008.
  • [22] Maleki, A. and Pourfayaz, F. 2015. Optimal Sizing of Autonomous Hybrid Photovoltaic/Wind/Battery Power System with Lpsp Technology by Using Evolutionary Algorithms, Solar Energy, Cilt. 115, s. 471-483. DOI: 10.1016/j.solener.2015.03.004.
  • [23] Cooper, P. 1969. The Absorption of Radiation in Solar Stills, Solar Energy, Cilt. 12, s. 333-346.
  • [24] Duffie, J.A. and Beckman, W.A. 2013. Solar Engineering of Thermal Processes. John Wiley & Sons, New Jersey.
  • [25] AXITECH 2016. Specifications of Axitec Ac-250m/156-60s. http://www.axitecsolar.com/data/document_files/DB_60zlg_mono_premium_MiA_US.pdf (Erişim Tarihi: January 15).
  • [26] Vestas 2016. Specifications of Vestas V90-1.8 Mw. http://www.esi-africa.com/wp-content/uploads/i/Product_BrochureV90_1_8MW_US.pdf (Erişim Tarihi: 11.09.2018).
  • [27] Siemens 2016. Specifications of Siemens Swt-2.3-101 Wind Turbine. http://www.siemens.com/content/dam/internet/siemens-com/global/market-specific-solutions/wind/data_sheets/data-sheet-wind-turbine-swt-2.3-101.pdf (Erişim Tarihi: 11.09.2018).
  • [28] Northel 2018. Specifications of Northel Poyra P36/300 Wind Turbine. http://www.northel.com.tr/products-pdf/300.pdf (Erişim Tarihi: 11.09.2018).
  • [29] Johnson, G.L. 2006. Wind Energy Systems. Citeseer, Manhattan, KS.
  • [30] Justus, C. and Mikhail, A. 1976. Height Variation of Wind Speed and Wind Distributions Statistics, Geophysical Research Letters, Cilt. 3, s. 261-264. DOI: 10.1029/GL003i005p00261.
  • [31] Mikhail, A. 1985. Height Extrapolation of Wind Data, Journal of Solar Energy Engineering, Cilt. 107, s. 10-14. DOI: 10.1115/1.3267645.
  • [32] Manwell, J.F., McGowan, J.G. and Rogers, A.L. 2010. Wind Energy Explained: Theory, Design and Application. John Wiley & Sons.
  • [33] Benseman, R. and Cook, F. 1969. Solar Radiation in New Zealand-Standard Year and Radiation on Inclined Slopes, New Zealand Journal of Science, Cilt. 12, s. 696.
  • [34] Andersen, B., Eidorff, S., Lund, H., Pedersen, E., Rosenorn, S. and Valbjorn, O. 1977. Meteorological Data for Design of Building and Installation: A Reference Year (Extract) Contract No.: 66,
  • [35] Lund, H. and Eidorff, E. 1981. Selection Methods for Production of Test Reference Years. Office for Official Publications of the European Communities,
  • [36] Hall, I.J., Prairie, R., Anderson, H. and Boes, E. 1978. Generation of a Typical Meteorological Year. Sandia Labs., Albuquerque, NM (USA),
  • [37] Remund, J., Müller, S., Kunz, S., Huguenin-Landl, B., Studer, C., Klauser, D., Schilter, C. and Lehnherr, R. 2013. Meteonorm Global Meteorological Database. Version 7.
  • [38] Sajed Sadati, S.M., Jahani, E., Taylan, O. and Baker, D.K. 2018. Sizing of Photovoltaic-Wind-Battery Hybrid System for a Mediterranean Island Community Based on Estimated and Measured Meteorological Data, Journal of Solar Energy Engineering, Cilt. 140, s. 011006-011012. DOI: 10.1115/1.4038466.
  • [39] The National Renewable Energy Laboratory 2016. U.S. Department of Energy: Distributed Generation Renewable Energy Estimate of Costs. https://www.nrel.gov/analysis/tech-lcoe-re-cost-est.html (Erişim Tarihi: 12 Mart 2019).
  • [40] Ilas, A., Ralon, P., Rodriguez, A. and Taylor, M. 2018. Renewable Power Generation Costs in 2017. International Renewable Energy Agency, Masdar City, UAE.
  • [41] Lazard 2017. Lazard’s Levelized Cost of Energy Analysis–Version 11.0. Lazard, New York.
  • [42] Al-Ghussain, L., Taylan, O. and Fahrioglu, M. 2018. Sizing of a Photovoltaic-Wind-Oil Shale Hybrid System: Case Analysis in Jordan, Journal of Solar Energy Engineering, Cilt. 140, s. 011002-011002-011012. DOI: 10.1115/1.4038048.
  • [43] Finance, B.N.E. 2014. Turkey’s Changing Power Markets. Bloomberg,
  • [44] Kıb-Tek 2018. Kıbrıs Türk Elektrik Kurumu-Tarifeler. http://www.kibtek.com/tarifeler/ (Erişim Tarihi: 15.01.2018).
  • [45] Lasdon, L.S., Fox, R.L. and Ratner, M.W. 1974. Nonlinear Optimization Using the Generalized Reduced Gradient Method, Revue française d'automatique, informatique, recherche opérationnelle Recherche opérationnelle, Cilt. 8, s. 73-103.
There are 45 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Onur Taylan 0000-0002-7746-2794

Publication Date September 20, 2019
Published in Issue Year 2019 Volume: 21 Issue: 63

Cite

APA Taylan, O. (2019). Fotovoltaik ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı ve Satış Tarifesinin Etkileri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(63), 879-895.
AMA Taylan O. Fotovoltaik ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı ve Satış Tarifesinin Etkileri. DEUFMD. September 2019;21(63):879-895.
Chicago Taylan, Onur. “Fotovoltaik Ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı Ve Satış Tarifesinin Etkileri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, no. 63 (September 2019): 879-95.
EndNote Taylan O (September 1, 2019) Fotovoltaik ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı ve Satış Tarifesinin Etkileri. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 63 879–895.
IEEE O. Taylan, “Fotovoltaik ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı ve Satış Tarifesinin Etkileri”, DEUFMD, vol. 21, no. 63, pp. 879–895, 2019.
ISNAD Taylan, Onur. “Fotovoltaik Ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı Ve Satış Tarifesinin Etkileri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/63 (September 2019), 879-895.
JAMA Taylan O. Fotovoltaik ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı ve Satış Tarifesinin Etkileri. DEUFMD. 2019;21:879–895.
MLA Taylan, Onur. “Fotovoltaik Ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı Ve Satış Tarifesinin Etkileri”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 21, no. 63, 2019, pp. 879-95.
Vancouver Taylan O. Fotovoltaik ve Rüzgâr Enerjisi Sistem Kapasitelerinin Tekno-Ekonomik Analizle Belirlenmesi: İndirim Oranı ve Satış Tarifesinin Etkileri. DEUFMD. 2019;21(63):879-95.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.