Research Article
BibTex RIS Cite

Optimum Design of Hybrid Graphite-Flax/Epoxy Laminated Composites for Minimum Cost, Minimum Weight and Maximum Frequency Using Modified Simulated Annealing Method

Year 2019, Volume: 21 Issue: 63, 833 - 844, 20.09.2019
https://doi.org/10.21205/deufmd.2019216313

Abstract




Ecological approach in
automotive,  aerospace and marine
industries have stated  that natural
fibers  (especially flax) can be used
as alternative reinforcing materials to glass fibers because of their
inherent good natural frequency, low cost and weight performances. In this
regard, the present paper investigates the effect of the usage of flax fiber
on fundamental frequency, cost and weight in interply hybrid composite
structures. Stacking sequences design and optimization of laminated
composites based on Modified Simulated Annealing algorithm is considered. The
optimization problem is to find  the
number of high stiffness and less expensive laminates for maximum fundamental
frequency-minimum cost and maximum fundamental frequency-minimum weight by
multi objective optimization approach. The present study is the first to
examine the frequency-cost and natural frequency-weight optimization problems
of natural fiber reinforced laminated composites. The results show that the
potential usage of symmetric-balance graphite–flax/epoxy hybrid  composite material instead of
graphite/epoxy  is appropriate without
sacrificing in stiffness-to-weight ratios.





References

  • [1] Bert, C.W. 1977. Optimal design of a composite material plate to maximize its fundamental frequency, Journal of Sound and Vibration, Cilt. 50,(2), s. 229-237. DOI: 10.1016/0022-460X(77)90357-1
  • [2] Reiss, R., Ramachandran, S. 1987. Maximum frequency design of symmetric angle-ply laminates,Composite Structures, Cilt. 4, s. 1476-1487. DOI: 10.1007/978-94-009-3455-9_37
  • [3] Grenestedt, J.L. 1989. Layup optimization and sensitivity analysis of the fundamental eigen-frequency of composite plates, Composite Structures, Cilt. 12 (3), s. 193-209. DOI: 10.1016/0263-8223(89)90022-6
  • [4] Duffy, K.J, Adali, S. 1991. Maximum frequency design of pre-stressed symmetric, cross-ply laminates of hybrid construction,Advances in design automation,Cilt. 2, s. 477-484
  • [5] Adali, S. 1984. Design of shear-deformable antisymmetric angle-ply laminates to maximize the fundamental frequency and frequency separation,Composite Structures, Cilt. 2 (4), s. 349-369. DOI:10.1016/0263-8223(84)90005-9
  • [6] Fukunaga, H., Sekine, H., Sato, M. 1994. Optimal design of symmetric laminated plates for fundamental frequency, Journal of Sound and Vibration, Cilt. 171 (2), s. 219-229. DOI:10.1006/jsvi.1994.1115
  • [7] Narita, Y., Leissa, A. W. 1992. Frequencies and mode shapes of cantilevered laminated composite plates. Journal of Sound and Vibration, Cilt.154(1), s. 161–172. DOI: 10.1016/0022-460X(92)90410-Y
  • [8] Apalak, M.K., Yildirim, M., Ekici, R. 2008. Layer optimization for maximum fundamental frequency of laminated composite plates for different edge conditions, Composites Science and Technology, Cilt. 68, s. 537-550.
  • [9] Adali, S., Duffy, K. 1992. Minimum cost design of vibrating laminates by hybridization, Engineering Optimization, Cilt. 19(4), s. 255–267.DOI: 10.1080/03052159208941231
  • [10] Adali, S., Verijenko, V.E. 2001. Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations, Composite Structures,Cilt. 54(2–3), s. 131–138. DOI: 10.1016/S0263-8223(01)00080-0
  • [11] Abachizadeh, M., Tahani, M. 2009. An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximumfundamental frequency and minimum cost, Structural Multidisciplinary Optimization, Cilt. 37(4), s. 367–376. DOI: 10.1007/s00158-008-0235-6
  • [12] Lakshmi, K., Rao, A.R.M. 2015. Optimal design of laminate composite plates using dynamic hybrid adaptive harmony search algorithm, Journal of Reinforced Plastics Composites, Cilt. 34 (6), s. 493–518. DOI: 10.1177/0731684415574228
  • [13] Grosset, L., Venkataraman, S., Haftka, R. 2001. Genetic optimization of two-material composite laminates, In 16th ASC technical meeting. Blacksburg- Virginia.
  • [14] Roque, C. M. C., Martins, P. A. L. S. 2017. Maximization of fundamental frequency of layered composites using differential evolution optimization, Composite Structures, Cilt. 183, s. 77- 83. DOI: 10.1016/j.compstruct.2017.01.037
  • [15] Tahani, M., Kolahan, F., Sarhadi, A. 2005. Genetic algorithm for multi-objective optimal design of sandwich composite laminates with minimum cost and maximum frequency, Proceedings of international conference on advances in materials, product design and manufacturing systems ICMPM, India, 741–748.
  • [16] Kolahan, F., Tahani, M., Sarhadi, A. 2005. Optimal design of sandwich composite laminates for minimum cost and maximum frequency using simulated annealing, Proceedings of Tehran international conference on manufacturing engineering TICME, Tahran-Iran, Aralık 12-15.
  • [17] Hemmatian, H., Fereidoon, A., Sadollah, A.,Bahreininejad, A. 2013. Optimization of laminate stacking sequence for minimizing weight and cost using elitist ant system optimization, Advances in Engineering Software, Cilt. 57, s. 8-18. DOI:10.1016/j.advengsoft.2012.11.005
  • [18] Aydin, L., Artem, H.S. 2011. Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings, Journal of Reinforced Plastics Composites, Cilt. 30 (14), s. 1197-1212. DOI: 10.1177/0731684411415138
  • [19] Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F., Saka, M. 2010. Comparison of non-deterministic search techniques in the optimum design of real size steelframes, Computures and Structures, Cilt. 88 (17-18),s. 1033-1048. DOI: 10.1016/j.compstruc.2010.06.006
  • [20] Manoharan, S., Shanmuganathan, S. 1999. A comparison of search mechanisms for structural optimization, Computures and Structures, Cilt. 73 (1-5), s. 363-372. DOI: 10.1016/S0045-7949(98)00287-9
  • [21] Prabhakaran, S., Krishnaraj, V., Senthil, K. M., Zitoune, R. 2014. Sound and vibration damping properties of flax fiber reinforced composites, Procedia Engineering, Cilt. 97, s. 573–81. DOI: 10.1016/j.proeng.2014.12.285
  • [22] Shah, D.U., Schubel, P.J., Clifford M.J. 2013. Can flax replace E-glass in structural composites? A small wind turbine blade case study, Composites Part B,Cilt. 52, s. 172–81. DOI: 10.1016/j.compositesb.2013.04.027
  • [23] Dittenber, D.B., Gangarao, H.V.S. 2012. Critical review of recent publications on use of natural composites in infrastructure, Composites Part A,Cilt. 43 (8), s. 1419–29. DOI: 10.1016/j.compositesa.2011.11.019
  • [24] Yan, L., Chouw, N., Jayaraman, K. 2014. Flax fibre and its composites - A review, Composites Part B,Cilt. 56, s. 296–317.DOI: 10.1016/j.compositesb.2013.08.014
  • [25] Liang, S., Guillaumat, L., Gning, P. B. 2015. Impact behaviour of flax/epoxy composite plates,International Journal of Impact Engineering, Cilt. 80,s. 56–64.DOI: 10.1016/j.ijimpeng.2015.01.006
  • [26] Aydin, L., Artem, S., Oterkus, E., Gundogdu, O.,Akbulut, H. 2017. Mechanics of fiber composites,Fiber Technology for Fiber-Reinforced Composites,5-50. Seydibeyoglu, O., Mohanty, A., Misra, M. 2017.Fiber technology for fiber-reinforced composites Woodhead Publishing Series in Composites Scienceand Engineering, Cambridge, 325.
  • [27] Nemeth, M. 1986. Importance of anisotropy on buckling of compression-loaded symmetric composite plates, AIAA journal, Cilt. 24 (11), s.1831-1835. DOI: 10.2514/3.9531
  • [28] Deveci, H.A., Aydin, L., Artem, H.S. 2016. Buckling optimization of composite laminates using a hybrid algorithm under Puck failure criterion constraint,Journal of Reinforced Plastics Composites, Cilt. 35 (16), s. 1233-1247. DOI: 10.1177/0731684416646860
  • [29] Ozturk, S., Aydin, L., Kucukdogan, N., Celik, E. 2018. Optimization of lapping processes of silicon wafer for photovoltaic applications, Solar Energy, Cilt. 164,s. 1-11. DOI: 10.1016/j.solener.2018.02.039
  • [30] Ozturk, S., Aydin, L., Celik, E. 2018. A comprehensive study on slicing processes optimization of silicon ingot for photovoltaic applications, Solar Energy, Cilt. 161, s. 109-124. DOI: 10.1016/j.solener.2017.12.040

Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı

Year 2019, Volume: 21 Issue: 63, 833 - 844, 20.09.2019
https://doi.org/10.21205/deufmd.2019216313

Abstract

Otomotiv, havacılık ve denizcilik
endüstrilerindeki ekolojik yaklaşım, doğal liflerin (özellikle keten) yüksek
doğal frekans, düşük maliyet ve ağırlık performansları nedeniyle cam elyaflara
alternatif takviye malzemeleri olarak kullanılabileceğini göstermiştir. Bu
bağlamda, bu çalışma, keten lif kullanımının inter-ply hibrit kompozit
yapılarda doğal frekans, maliyet ve ağırlık üzerindeki etkisini
araştırmaktadır. Tabakalı kompozitlerin optimum açı dizilimlerinin tespiti
Geliştirilmiş Benzetilmiş Tavlama Algoritması kullanılarak yapılmıştır. Mevcut
çalışmada çok amaçlı optimizasyon yaklaşımı ile maksimum doğal frekansa sahip,
hafif ve düşük maliyetli bir tasarım elde edebilmek için gerekli olan yüksek
rijitliğe sahip düşük maliyetli tabakaların sayısı bulunmuştur. Bu çalışma,
doğal bir fiber olan keten’e ait doğal frekans-fiyat ve doğal frekans-ağırlık
optimizasyon problemlerini tabakalı kompozit plakalar açısından inceleyen
literatürdeki ilk çalışma olma özelliğini taşımaktadır. Sonuçlar,
simetrik-balans hibrit grafit-keten/epoksi kompozit malzemenin spesifik
rijitlik oranından taviz vermeden istenen frekans, fiyat ve ağırlık
optimizasyonunu sağlayarak grafit/epoksi yerine kullanılmasının uygun olduğunu
göstermiştir

References

  • [1] Bert, C.W. 1977. Optimal design of a composite material plate to maximize its fundamental frequency, Journal of Sound and Vibration, Cilt. 50,(2), s. 229-237. DOI: 10.1016/0022-460X(77)90357-1
  • [2] Reiss, R., Ramachandran, S. 1987. Maximum frequency design of symmetric angle-ply laminates,Composite Structures, Cilt. 4, s. 1476-1487. DOI: 10.1007/978-94-009-3455-9_37
  • [3] Grenestedt, J.L. 1989. Layup optimization and sensitivity analysis of the fundamental eigen-frequency of composite plates, Composite Structures, Cilt. 12 (3), s. 193-209. DOI: 10.1016/0263-8223(89)90022-6
  • [4] Duffy, K.J, Adali, S. 1991. Maximum frequency design of pre-stressed symmetric, cross-ply laminates of hybrid construction,Advances in design automation,Cilt. 2, s. 477-484
  • [5] Adali, S. 1984. Design of shear-deformable antisymmetric angle-ply laminates to maximize the fundamental frequency and frequency separation,Composite Structures, Cilt. 2 (4), s. 349-369. DOI:10.1016/0263-8223(84)90005-9
  • [6] Fukunaga, H., Sekine, H., Sato, M. 1994. Optimal design of symmetric laminated plates for fundamental frequency, Journal of Sound and Vibration, Cilt. 171 (2), s. 219-229. DOI:10.1006/jsvi.1994.1115
  • [7] Narita, Y., Leissa, A. W. 1992. Frequencies and mode shapes of cantilevered laminated composite plates. Journal of Sound and Vibration, Cilt.154(1), s. 161–172. DOI: 10.1016/0022-460X(92)90410-Y
  • [8] Apalak, M.K., Yildirim, M., Ekici, R. 2008. Layer optimization for maximum fundamental frequency of laminated composite plates for different edge conditions, Composites Science and Technology, Cilt. 68, s. 537-550.
  • [9] Adali, S., Duffy, K. 1992. Minimum cost design of vibrating laminates by hybridization, Engineering Optimization, Cilt. 19(4), s. 255–267.DOI: 10.1080/03052159208941231
  • [10] Adali, S., Verijenko, V.E. 2001. Optimum stacking sequence design of symmetric hybrid laminates undergoing free vibrations, Composite Structures,Cilt. 54(2–3), s. 131–138. DOI: 10.1016/S0263-8223(01)00080-0
  • [11] Abachizadeh, M., Tahani, M. 2009. An ant colony optimization approach to multi-objective optimal design of symmetric hybrid laminates for maximumfundamental frequency and minimum cost, Structural Multidisciplinary Optimization, Cilt. 37(4), s. 367–376. DOI: 10.1007/s00158-008-0235-6
  • [12] Lakshmi, K., Rao, A.R.M. 2015. Optimal design of laminate composite plates using dynamic hybrid adaptive harmony search algorithm, Journal of Reinforced Plastics Composites, Cilt. 34 (6), s. 493–518. DOI: 10.1177/0731684415574228
  • [13] Grosset, L., Venkataraman, S., Haftka, R. 2001. Genetic optimization of two-material composite laminates, In 16th ASC technical meeting. Blacksburg- Virginia.
  • [14] Roque, C. M. C., Martins, P. A. L. S. 2017. Maximization of fundamental frequency of layered composites using differential evolution optimization, Composite Structures, Cilt. 183, s. 77- 83. DOI: 10.1016/j.compstruct.2017.01.037
  • [15] Tahani, M., Kolahan, F., Sarhadi, A. 2005. Genetic algorithm for multi-objective optimal design of sandwich composite laminates with minimum cost and maximum frequency, Proceedings of international conference on advances in materials, product design and manufacturing systems ICMPM, India, 741–748.
  • [16] Kolahan, F., Tahani, M., Sarhadi, A. 2005. Optimal design of sandwich composite laminates for minimum cost and maximum frequency using simulated annealing, Proceedings of Tehran international conference on manufacturing engineering TICME, Tahran-Iran, Aralık 12-15.
  • [17] Hemmatian, H., Fereidoon, A., Sadollah, A.,Bahreininejad, A. 2013. Optimization of laminate stacking sequence for minimizing weight and cost using elitist ant system optimization, Advances in Engineering Software, Cilt. 57, s. 8-18. DOI:10.1016/j.advengsoft.2012.11.005
  • [18] Aydin, L., Artem, H.S. 2011. Comparison of stochastic search optimization algorithms for the laminated composites under mechanical and hygrothermal loadings, Journal of Reinforced Plastics Composites, Cilt. 30 (14), s. 1197-1212. DOI: 10.1177/0731684411415138
  • [19] Hasançebi, O., Çarbaş, S., Doğan, E., Erdal, F., Saka, M. 2010. Comparison of non-deterministic search techniques in the optimum design of real size steelframes, Computures and Structures, Cilt. 88 (17-18),s. 1033-1048. DOI: 10.1016/j.compstruc.2010.06.006
  • [20] Manoharan, S., Shanmuganathan, S. 1999. A comparison of search mechanisms for structural optimization, Computures and Structures, Cilt. 73 (1-5), s. 363-372. DOI: 10.1016/S0045-7949(98)00287-9
  • [21] Prabhakaran, S., Krishnaraj, V., Senthil, K. M., Zitoune, R. 2014. Sound and vibration damping properties of flax fiber reinforced composites, Procedia Engineering, Cilt. 97, s. 573–81. DOI: 10.1016/j.proeng.2014.12.285
  • [22] Shah, D.U., Schubel, P.J., Clifford M.J. 2013. Can flax replace E-glass in structural composites? A small wind turbine blade case study, Composites Part B,Cilt. 52, s. 172–81. DOI: 10.1016/j.compositesb.2013.04.027
  • [23] Dittenber, D.B., Gangarao, H.V.S. 2012. Critical review of recent publications on use of natural composites in infrastructure, Composites Part A,Cilt. 43 (8), s. 1419–29. DOI: 10.1016/j.compositesa.2011.11.019
  • [24] Yan, L., Chouw, N., Jayaraman, K. 2014. Flax fibre and its composites - A review, Composites Part B,Cilt. 56, s. 296–317.DOI: 10.1016/j.compositesb.2013.08.014
  • [25] Liang, S., Guillaumat, L., Gning, P. B. 2015. Impact behaviour of flax/epoxy composite plates,International Journal of Impact Engineering, Cilt. 80,s. 56–64.DOI: 10.1016/j.ijimpeng.2015.01.006
  • [26] Aydin, L., Artem, S., Oterkus, E., Gundogdu, O.,Akbulut, H. 2017. Mechanics of fiber composites,Fiber Technology for Fiber-Reinforced Composites,5-50. Seydibeyoglu, O., Mohanty, A., Misra, M. 2017.Fiber technology for fiber-reinforced composites Woodhead Publishing Series in Composites Scienceand Engineering, Cambridge, 325.
  • [27] Nemeth, M. 1986. Importance of anisotropy on buckling of compression-loaded symmetric composite plates, AIAA journal, Cilt. 24 (11), s.1831-1835. DOI: 10.2514/3.9531
  • [28] Deveci, H.A., Aydin, L., Artem, H.S. 2016. Buckling optimization of composite laminates using a hybrid algorithm under Puck failure criterion constraint,Journal of Reinforced Plastics Composites, Cilt. 35 (16), s. 1233-1247. DOI: 10.1177/0731684416646860
  • [29] Ozturk, S., Aydin, L., Kucukdogan, N., Celik, E. 2018. Optimization of lapping processes of silicon wafer for photovoltaic applications, Solar Energy, Cilt. 164,s. 1-11. DOI: 10.1016/j.solener.2018.02.039
  • [30] Ozturk, S., Aydin, L., Celik, E. 2018. A comprehensive study on slicing processes optimization of silicon ingot for photovoltaic applications, Solar Energy, Cilt. 161, s. 109-124. DOI: 10.1016/j.solener.2017.12.040
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Articles
Authors

Levent Aydın 0000-0003-0483-0071

Melih Savran This is me 0000-0001-8343-1073

Publication Date September 20, 2019
Published in Issue Year 2019 Volume: 21 Issue: 63

Cite

APA Aydın, L., & Savran, M. (2019). Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 21(63), 833-844. https://doi.org/10.21205/deufmd.2019216313
AMA Aydın L, Savran M. Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı. DEUFMD. September 2019;21(63):833-844. doi:10.21205/deufmd.2019216313
Chicago Aydın, Levent, and Melih Savran. “Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık Ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 21, no. 63 (September 2019): 833-44. https://doi.org/10.21205/deufmd.2019216313.
EndNote Aydın L, Savran M (September 1, 2019) Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21 63 833–844.
IEEE L. Aydın and M. Savran, “Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı”, DEUFMD, vol. 21, no. 63, pp. 833–844, 2019, doi: 10.21205/deufmd.2019216313.
ISNAD Aydın, Levent - Savran, Melih. “Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık Ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 21/63 (September 2019), 833-844. https://doi.org/10.21205/deufmd.2019216313.
JAMA Aydın L, Savran M. Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı. DEUFMD. 2019;21:833–844.
MLA Aydın, Levent and Melih Savran. “Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık Ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 21, no. 63, 2019, pp. 833-44, doi:10.21205/deufmd.2019216313.
Vancouver Aydın L, Savran M. Geliştirilmiş Benzetilmiş Tavlama Algoritması Kullanılarak Minimum Fiyat, Minimum Ağırlık ve Maksimum Doğal Frekans Açısından Hibrit Grafit-Keten/Epoksi Tabakalı Kompozitlerin Optimum Tasarımı. DEUFMD. 2019;21(63):833-44.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.