The Effect of Natural Antimicrobial Agents on the Characteristics of Surgical Sutures
Year 2020,
Volume: 22 Issue: 64, 11 - 20, 24.01.2020
Elif Alyamaç Seydibeyoğlu
,
Ayşe Işık
Abstract
Surgical site infections (SSI)
occur after the surgery in body parts where the operation took place. In surgeries,
wounds are closed by thread-like materials known as sutures. Some types of
sutures may promote bacteria proliferation which is one of the leading causes
of the SSI. Sutures undergo coating procedure to prevent infection occurrence. In
this study, different types of surgical sutures were coated with natural
antimicrobial agents to evaluate their effect on morphological and mechanical
properties of the surgical sutures. In this context, due to its antimicrobial
ability, chitosan was selected and dissolved in acetic acid solution with other
natural antimicrobial agents (aloe vera and olive leaf extract) through
ultrasound technology. Multifilament silk, multifilament polyester, and
monofilament polyamide sutures were then dipped into those solutions prepared
at different concentrations in order to study the synergistic effect of
antimicrobial agents. Fourier transform
infrared spectroscopy with attenuated total reflectance (FTIR-ATR) was performed
to identify the functional groups on the surface of the coated sutures. Suture
surfaces were also analyzed by scanning electron microscope (SEM) to observe the
coating on the surface of sutures. Strong adhesion was determined between the
suture surface and the coating material after long duration of dipping and
drying procedure. It was also found that the coating process increased the
mechanical properties of the sutures.
References
- [1] Mackenzie, D. 1973. The History of Sutures, Medical History, Vol. 17(2), p. 158-168.
- [2] Chu, C.C., J.A. Von Fraunhofer, and H.P. Greisler. 1996. Wound Closure Biomaterials and Devices. CRC Press, p. 416.
- [3] Swanson, N.A., Tromovitch, T.A. 1982. Suture Materials, 1980s: properties, uses, and abuses, International journal of dermatology, Vol. 21(7), p.373-378.
- [4] Dennis, C., et al. 2016. Suture Materials— Current and Emerging Trends, Journal of Biomedical Materials Research Part A, Vol. 104(6), p. 1544-1559. DOI: https://doi.org/10.1002/jbm.a.35683
- [5] Islam, A., Ehsan, A. 2011. Comparison of Suture Material and Technique of Closure of Subcutaneous Fat and Skin in Caesarean Section, North American Journal of Medical Sciences, Vol. 3(2), p. 85. DOI: 10.4297/najms.2011.385
- [6] Pillai, C.K.S., Sharma, C.P. 2010. Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance, Journal of Biomaterials Applications, Vol. 25(4), p. 291-366. DOI: 10.1177/0885328210384890
- [7] Singhal, J.P., Singh, H., and Ray, A.R. 1988. Absorbable Suture Materials: Preparation and Properties, Polymer Reviews, Vol. 28 (3-4), p. 475-502. DOI:https://doi.org/10.1080/15583728808085383
- [8] Horacek, I. 1989. Survey of the Present Knowledge on Biodegradable Polymers for Resorbable Sutures. Chemicke Vlakna, Vol. 39, p. 214-222.
- [9] Hon, L.Q., et al. 2009. Vascular Closure Devices: A Comparative Overview, Current problems in Diagnostic Radiology, Vol. 38(1), p. 33-43. DOI: 10.1067/j.cpradiol.2008.02.002
- [10] Yu, G., Cavaliere, R. 1983. Suture Materials. Properties and Uses, Journal of American Podiatric Medical Association, Vol. 73(2), p. 57-64.
- [11] Kudur, M.H., et al. 2009. Sutures and Suturing Techniques in Skin Closure, Indian Journal of Dermatology, Venereology, and Leprology, Vol. 75(4), p. 425. DOI: 10.4103/0378-6323.53155
- [12] Chang, W.K., et al. 2012. Triclosan-Impregnated Sutures to Decrease Surgical Site Infections: Systematic Review and Meta-analysis of Randomized Trials, Annals of Surgery, Vol. 255(5), p. 854-859. DOI: 10.1097/SLA.0b013e31824e7005
- [13] Edmiston, C.E., et al. 2006. Bacterial Adherence to Surgical Sutures: Can Antibacterial-Coated Sutures Reduce the Risk of Microbial Contamination?, Journal of the American College of Surgeons, Vol. 203(4), p. 481-489. DOI: 10.1016/j.jamcollsurg.2006.06.026
- [14] Mingmalairak, C. 2011. Antimicrobial Sutures: New Strategy in Surgical Site Infections, Science Against Microbial Pathogens: Communicating Current Research and Technological Advances: Formatex Research Center, p. 313-323.
- [15] Hoshino, S., et al. 2013. A Study of the Efficacy of Antibacterial Sutures for Surgical Site Infection: A Retrospective Controlled Trial, International Surgery, Vol. 98(2), p. 12-132. DOI: 10.9738/CC179
- [16] Federov, M., et al. 2006. Structure and Strength Properties of Surgical Sutures Modified with a Polyhydroxybutyrate Coating, Fibre Chemistry, Vol. 38(6), p. 471-475.
- [17] Alexander, J.W., Solomkin, J.S., and Edwards, M.J. 2011. Updated Recommendations for Control of the Surgical Site Infections, Annals of Surgery, Vol. 253(6), p. 1082-1092. DOI: 10.1097/SLA.0b013e31821175f8
- [18] Cao, G.F., et al. 2014. Sutures Modified by Silver-Loaded Montmorillonite with Antibacterial Properties, Applied Clay Science, Vol. 93, p. 102-106.
- [19] Fleck, T., et al. 2007. Triclosan-Coated Sutures for the Reduction of Sternal Wound Infections: Economic Considerations, The Annals of Thoracic Surgery, Vol. 84(1), p.232-236. DOI: 10.1016/j.athoracsur.2007.03.045
- [20] Zhang, S., et al. 2014. Silver Nanoparticle-Coated Suture Effectively Reduces Inflammation and Improves Mechanical Strength at Intestinal Anastomosis in Mice, Journal of Pediatric Surgery, Vol. 49(4), p. 606-613. DOI: 10.1016/j.jpedsurg.2013.12.012
- [21] Elek, S.D., Conen, P. 1957. The Virulence of Staphylococcus Pyogenes for Man. A Study of the Problems of Wound Infection, British Journal of Experimental Pathology, Vol. 38(6), p. 573.
- [22] Wang, Z., et al. 2013. Systematic Review and Meta‐Analysis of Triclosan‐Coated Sutures for the Prevention of Surgical‐Site Infection, British Journal Of Surgery, Vol. 100(4), p. 456-473. DOI: 10.1002/bjs.9062
- [23] Schweizer, H.P. 2001. Triclosan: A Widely Used Biocide and Its Link to Antibiotics, FEMS Microbiology Letters, Vol. 202(1), p. 1-7.
- [24] Yazdankhah, S.P., et al. 2006. Triclosan and Antimicrobial Resistance in Bacteria: An Overview, Microbial Drug Resistance, Vol. 12(2), p. 83-90.
- [25] Clayton, E.M.R., et al. 2011. The Impact of Bisphenol a and Triclosan on Immune Parameters in the US Population, NHANES 2003–2006, Environmental Health Perspectives, Vol. 119(3), p. 390. DOI: 10.1089/mdr2006.12.83
- [26] Jain, A., et al. 2014. Antimicrobial Polymers, Advanced Healthcare Materials, Vol. 3(12), p. 1969-1985.
- [27] De Alvarenga, E.S. 2011. Characterization and Properties of Chitosan, Biotechnology of Biopolymers Magdy Elnashar, IntechOpen. DOI: 10.5772/17020
- [28] Shigemasa, Y., Minami, S. 1996. Applications of Chitin and Chitosan for Biomaterials, Biotechnology and Genetic Engineering Reviews, Vol. 13(1), p. 383-420.
- [29] Rinaudo, M. 2006. Chitin and Chitosan: Properties and Applications, Progress in Polymer Science, Vol. 31(7): p. 603-632. DOI: 10.1016/j.progpolymsci.2006.06.001
- [30] Azad, A.K., et al. 2004. Chitosan Membrane as a Wound‐Healing Dressing: Characterization and Clinical Application, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 69(2), p. 216-222. DOI: 10.1002/jbm.b.30000
- [31] Kurita, K. 1998. Chemistry and Application of Chitin and Chitosan, Polymer Degradation and Stability, Vol. 59(1-3), p. 117-120. DOI: 10.1016/S0141-3910(97)00160-2
- [32] Allan, C.R., Hadwiger, L.A. 1979. The Fungicidal Effect of Chitosan on Fungi of Varying Cell Wall Composition, Experimental Mycology, Vol. 3(3), p.285-287. DOI: 10.1016/S0147-5975(79)80054-7
- [33] Hirano, S., Nagao, N. 1989. Effects of Chitosan, Pectic Acid, Lysozyme, and Chitinase on the Growth of Several Phytopathogens, Agricultural and Biological chemistry, Vol. 53(11), p. 3065-3066.
- [34] Kong, M., et al. 2010. Antimicrobial Properties of Chitosan and Mode of Action: A State of The Art Review, International Journal of Food Microbiology, Vol. 144(1), p. 51-63. DOI: 10.1016/j.ijfoodmicro.2010.09.012
- [35] Kong, M., et al. 2008. Antibacterial Mechanism of Chitosan Microspheres in a Solid Dispersing System Against E. Coli. Colloids and Surfaces B: Biointerfaces, Vol. 65(2), p. 197-202. DOI: 10.1016/j.colsurfb.2008.04.003
- [36] Sudarshan, N.D., Hoover, D., and Knorr, D. 1992. Antibacterial Action of Chitosan, Food Biotechnology, Vol. 6(3), p. 257-272. DOI: 10.1080/08905439209549838
- [37] Sudjana, A.N., et al. 2009. Antimicrobial Activity of Commercial Olea Europaea (Olive) Leaf Extract, International Journal of Antimicrobial Agents, Vol. 33(5), p. 461-463. DOI: 10.1016/j.ijantimicag.2008.10.026
- [38] Micol, V., et al. 2005. The Olive Leaf Extract Exhibits Antiviral Activity Against Viral Haemorrhagic Septicaemia Rhabdovirus (VHSV), Antiviral Research, Vol. 66(2-3), p. 129-136. DOI: 10.1016/j.antiviral.2005.02.005
- [39] Renis, H.E. 1969. In Vitro Antiviral Activity of Calcium Elenolate, Antimicrobial Agents and Chemotherapy, Vol. 9, p. 167.
- [40] Fleming, H., Walter, W., and Etchells, J. 1969. Isolation of a Bacterial Inhibitor From Green Olives, Applied Microbiology, Vol. 18(5), p. 856-860.
- [41] Hoffman, R., et al. 2010. Olive Leaf Extract, Viitattu, Vol. 5, p. 2010.
- [42] Nejatzadeh-Barandozi, F. 2013. Antibacterial Activities and Antioxidant Capacity of Aloe Vera, Organic and Medicinal Chemistry Letters, Vol. 3(1), p. 5. DOI: 10.1186/2191-2858-3-5
- [43] Alemdar, S., Agaoglu, S. 2009. Investigation of In Vitro Antimicrobial Activity of Aloe Vera Juice, J Anim Vet Adv, Vol. 8(1), p. 99-102.
- [44] Olaleye, M., Bello-Michael, C. 2005. Comparative Antimicrobial Activities of Aloe Vera Gel and Leaf, African Journal of Biotechnology, Vol. 4(12), p. 1413-1414.
- [45] Deopura, B., et al. 2008. Polyesters and Polyamides. CRC Press Woodhead Publishing, Cambridge, 608p.
- [46] Gao, Y., Cranston, R. 2008. Recent Advances in Antimicrobial Treatments of Textiles, Textile Research Journal, Vol. 78(1), p. 60-72. DOI: 10.1177/0040517507082332
- [47] Kenawy, E.R., et al. 2002. Biologically Active Polymers. V. Synthesis and Antimicrobial Activity of Modified Poly (Glycidyl Methacrylate‐Co‐2‐Hydroxyethyl Methacrylate) Derivatives with Quaternary Ammonium and Phosphonium Salts, Journal of Polymer Science Part A: Polymer Chemistry, Vol. 78(1), p. 60-72. DOI: 10.1002/pola.10325
- [48] Huang, K.S., et al. 2008. Application of Low-Molecular-Weight Chitosan in Durable Press Finishing, Carbohydrate Polymers, Vol. 73(2), p. 254-260.
- [49] Ma, Y., Zhou, T., and Zhao, C. 2008. Preparation of Chitosan–Nylon-6 Blended Membranes Containing Silver Ions as Antibacterial Materials, Carbohydrate Research, Vol. 343(2), p. 230-237.
- [50] Strnad, S., et al. 2008. Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan, Textile Research Journal, Vol. 78(5), p. 390-398.
- [51] Ye, W., et al. 2005. Novel Core-Shell Particles with Poly (N-Butyl Acrylate) Cores and Chitosan Shells as an Antibacterial Coating for Textiles, Polymer, Vol. 46(23), p. 10538-10543. DOI: 10.1016/j.polymer.2005.08.019
- [52] Joshi, M., et al. 2009. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products, Indian Journal of Fibre & Textile Research, Vol. 34(3), p. 295-304.
- [53] Markin, D., Duek, L., and Berdicevski, I. 2003. In Vitro Antimicrobial Activity of Olive Leaves, Antimikrobielle Wirksamkeit von Olivenblättern in vitro, Vol. 46(3-4), p. 132-136.
- [54] Pharmacopeia, U., USP 29–NF 24. Rockville, MD: USP, 2005.
- [55] Masood, R., et al. 2017. In Situ Development and Application of Natural Coatings on Non-Absorbable Sutures to Reduce Incision Site Infections, Journal of Wound Care, Vol. 26(3), p. 115-120. DOI: 10.12968/jowc.2017.26.3.115
- [56] Silverstein, R.M., Bassler, G.C., and Morrill, T.C. 1981. Spectroscopic identification of organic compounds. John Wiley & Sons, New York, 550p.
- [57] Naleway, S.E., et al. 2015. Mechanical Properties of Suture Materials in General and Cutaneous Surgery, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 103(4), p. 735-742. DOI: 10.1002/jbm.b.33171
- [58] Tera, H. 1976. Tensile Strength of Twelve Types of Knots Employed in Surgery, Using Different Material, Acta Chir. Scand., Vol. 142, p. 83-90.
- [59] Debbabi, F., et al. 2017. Development and Characterization of Antibacterial Braided Polyamide Suture Coated with Chitosan-Citric Acid Biopolymer, Journal of Biomaterials Applications, Vol. 32(3), p. 384-398.
- [60] Yang, Y., et al. 2017. Bacterial Inhibition Potential of Quaternised Chitosan-Coated VICRYL Absorbable Suture: An In Vitro and In Vivo Study, Journal of Orthopaedic Translation, Vol. 8, p. 49-61. DOI: 10.1016/j.jot.2016.10.001
- [61] Li, Y., et al. 2012. New Bactericidal Surgical Suture Coating. Langmuir, Vol. 28(33), p. 12134-12139. DOI: 10.1021/la302732w
Doğal Antimikrobiyal Maddelerin Cerrahi Sütürlerin Özelliklerine Etkisi
Year 2020,
Volume: 22 Issue: 64, 11 - 20, 24.01.2020
Elif Alyamaç Seydibeyoğlu
,
Ayşe Işık
Abstract
Cerrahi girişim
uygulanan vücut bölgelerinde, ameliyat sonrası cerrahi alan enfeksiyonları
(CAE) ortaya çıkar. Cerrahide yaralar sütür olarak bilinen iplik benzeri
materyallerle kapatılır. Bazı sütür tipleri, CAE'ye sebep olan bakterilerin
çoğalmasına neden olmaktadır. Sütür kaynaklı enfeksiyonun önüne geçmek için
antimikrobiyallerle kaplama yapılır. Bu çalışmada, CAE’nin üstesinden gelmek
amacıyla farklı tipteki cerrahi sütürler doğal antimikrobiyal ajanlarla
kaplanmıştır ve bu ajanların cerrahi sütürlerin morfolojik ve mekanik
özelliklerine olan etkisi değerlendirilmiştir. Bu bağlamda, doğal bir polimer
olan kitosan antimikrobiyal özelliğe sahip olması sebebiyle seçilmiştir ve
kitosan yine doğal antimikrobiyal ajan olan aloe vera ve zeytin yaprağı
ekstresi ile beraber asetik asit çözeltisi içerisinde ultrason teknolojisi
kullanılarak karıştırılıp kaplama solüsyonu hazırlanmıştır. Doğal ajanların
sinerjistik etkisini çalışmak için farklı konsantrasyonlarda hazırlanan
kaplama solüsyonlarına multifilament ipek, multifilament poliester ve
monofilament poliamid sütürler daldırılarak kaplama yapılmıştır. Fourier
dönüşümlü kızılötesi spektroskopisi kullanılarak kaplanmış sütürlerin
üzerindeki fonksiyonel gruplar belirlenmiştir. Sütürlerin yüzeyleri taramalı
elektron mikroskobuyla incelenerek uzun daldırma ve kurutma işlemleri sonrası
kaplama malzemesinin yüzeye güçlü bir şekilde tutunduğu gözlemlenmiştir. Ayrıca
yapılan mekanik testler sonucunda kaplama işleminin sütür mekanik özelliklerini
arttırdığı tespit edilmiştir.
|
|
|
References
- [1] Mackenzie, D. 1973. The History of Sutures, Medical History, Vol. 17(2), p. 158-168.
- [2] Chu, C.C., J.A. Von Fraunhofer, and H.P. Greisler. 1996. Wound Closure Biomaterials and Devices. CRC Press, p. 416.
- [3] Swanson, N.A., Tromovitch, T.A. 1982. Suture Materials, 1980s: properties, uses, and abuses, International journal of dermatology, Vol. 21(7), p.373-378.
- [4] Dennis, C., et al. 2016. Suture Materials— Current and Emerging Trends, Journal of Biomedical Materials Research Part A, Vol. 104(6), p. 1544-1559. DOI: https://doi.org/10.1002/jbm.a.35683
- [5] Islam, A., Ehsan, A. 2011. Comparison of Suture Material and Technique of Closure of Subcutaneous Fat and Skin in Caesarean Section, North American Journal of Medical Sciences, Vol. 3(2), p. 85. DOI: 10.4297/najms.2011.385
- [6] Pillai, C.K.S., Sharma, C.P. 2010. Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance, Journal of Biomaterials Applications, Vol. 25(4), p. 291-366. DOI: 10.1177/0885328210384890
- [7] Singhal, J.P., Singh, H., and Ray, A.R. 1988. Absorbable Suture Materials: Preparation and Properties, Polymer Reviews, Vol. 28 (3-4), p. 475-502. DOI:https://doi.org/10.1080/15583728808085383
- [8] Horacek, I. 1989. Survey of the Present Knowledge on Biodegradable Polymers for Resorbable Sutures. Chemicke Vlakna, Vol. 39, p. 214-222.
- [9] Hon, L.Q., et al. 2009. Vascular Closure Devices: A Comparative Overview, Current problems in Diagnostic Radiology, Vol. 38(1), p. 33-43. DOI: 10.1067/j.cpradiol.2008.02.002
- [10] Yu, G., Cavaliere, R. 1983. Suture Materials. Properties and Uses, Journal of American Podiatric Medical Association, Vol. 73(2), p. 57-64.
- [11] Kudur, M.H., et al. 2009. Sutures and Suturing Techniques in Skin Closure, Indian Journal of Dermatology, Venereology, and Leprology, Vol. 75(4), p. 425. DOI: 10.4103/0378-6323.53155
- [12] Chang, W.K., et al. 2012. Triclosan-Impregnated Sutures to Decrease Surgical Site Infections: Systematic Review and Meta-analysis of Randomized Trials, Annals of Surgery, Vol. 255(5), p. 854-859. DOI: 10.1097/SLA.0b013e31824e7005
- [13] Edmiston, C.E., et al. 2006. Bacterial Adherence to Surgical Sutures: Can Antibacterial-Coated Sutures Reduce the Risk of Microbial Contamination?, Journal of the American College of Surgeons, Vol. 203(4), p. 481-489. DOI: 10.1016/j.jamcollsurg.2006.06.026
- [14] Mingmalairak, C. 2011. Antimicrobial Sutures: New Strategy in Surgical Site Infections, Science Against Microbial Pathogens: Communicating Current Research and Technological Advances: Formatex Research Center, p. 313-323.
- [15] Hoshino, S., et al. 2013. A Study of the Efficacy of Antibacterial Sutures for Surgical Site Infection: A Retrospective Controlled Trial, International Surgery, Vol. 98(2), p. 12-132. DOI: 10.9738/CC179
- [16] Federov, M., et al. 2006. Structure and Strength Properties of Surgical Sutures Modified with a Polyhydroxybutyrate Coating, Fibre Chemistry, Vol. 38(6), p. 471-475.
- [17] Alexander, J.W., Solomkin, J.S., and Edwards, M.J. 2011. Updated Recommendations for Control of the Surgical Site Infections, Annals of Surgery, Vol. 253(6), p. 1082-1092. DOI: 10.1097/SLA.0b013e31821175f8
- [18] Cao, G.F., et al. 2014. Sutures Modified by Silver-Loaded Montmorillonite with Antibacterial Properties, Applied Clay Science, Vol. 93, p. 102-106.
- [19] Fleck, T., et al. 2007. Triclosan-Coated Sutures for the Reduction of Sternal Wound Infections: Economic Considerations, The Annals of Thoracic Surgery, Vol. 84(1), p.232-236. DOI: 10.1016/j.athoracsur.2007.03.045
- [20] Zhang, S., et al. 2014. Silver Nanoparticle-Coated Suture Effectively Reduces Inflammation and Improves Mechanical Strength at Intestinal Anastomosis in Mice, Journal of Pediatric Surgery, Vol. 49(4), p. 606-613. DOI: 10.1016/j.jpedsurg.2013.12.012
- [21] Elek, S.D., Conen, P. 1957. The Virulence of Staphylococcus Pyogenes for Man. A Study of the Problems of Wound Infection, British Journal of Experimental Pathology, Vol. 38(6), p. 573.
- [22] Wang, Z., et al. 2013. Systematic Review and Meta‐Analysis of Triclosan‐Coated Sutures for the Prevention of Surgical‐Site Infection, British Journal Of Surgery, Vol. 100(4), p. 456-473. DOI: 10.1002/bjs.9062
- [23] Schweizer, H.P. 2001. Triclosan: A Widely Used Biocide and Its Link to Antibiotics, FEMS Microbiology Letters, Vol. 202(1), p. 1-7.
- [24] Yazdankhah, S.P., et al. 2006. Triclosan and Antimicrobial Resistance in Bacteria: An Overview, Microbial Drug Resistance, Vol. 12(2), p. 83-90.
- [25] Clayton, E.M.R., et al. 2011. The Impact of Bisphenol a and Triclosan on Immune Parameters in the US Population, NHANES 2003–2006, Environmental Health Perspectives, Vol. 119(3), p. 390. DOI: 10.1089/mdr2006.12.83
- [26] Jain, A., et al. 2014. Antimicrobial Polymers, Advanced Healthcare Materials, Vol. 3(12), p. 1969-1985.
- [27] De Alvarenga, E.S. 2011. Characterization and Properties of Chitosan, Biotechnology of Biopolymers Magdy Elnashar, IntechOpen. DOI: 10.5772/17020
- [28] Shigemasa, Y., Minami, S. 1996. Applications of Chitin and Chitosan for Biomaterials, Biotechnology and Genetic Engineering Reviews, Vol. 13(1), p. 383-420.
- [29] Rinaudo, M. 2006. Chitin and Chitosan: Properties and Applications, Progress in Polymer Science, Vol. 31(7): p. 603-632. DOI: 10.1016/j.progpolymsci.2006.06.001
- [30] Azad, A.K., et al. 2004. Chitosan Membrane as a Wound‐Healing Dressing: Characterization and Clinical Application, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 69(2), p. 216-222. DOI: 10.1002/jbm.b.30000
- [31] Kurita, K. 1998. Chemistry and Application of Chitin and Chitosan, Polymer Degradation and Stability, Vol. 59(1-3), p. 117-120. DOI: 10.1016/S0141-3910(97)00160-2
- [32] Allan, C.R., Hadwiger, L.A. 1979. The Fungicidal Effect of Chitosan on Fungi of Varying Cell Wall Composition, Experimental Mycology, Vol. 3(3), p.285-287. DOI: 10.1016/S0147-5975(79)80054-7
- [33] Hirano, S., Nagao, N. 1989. Effects of Chitosan, Pectic Acid, Lysozyme, and Chitinase on the Growth of Several Phytopathogens, Agricultural and Biological chemistry, Vol. 53(11), p. 3065-3066.
- [34] Kong, M., et al. 2010. Antimicrobial Properties of Chitosan and Mode of Action: A State of The Art Review, International Journal of Food Microbiology, Vol. 144(1), p. 51-63. DOI: 10.1016/j.ijfoodmicro.2010.09.012
- [35] Kong, M., et al. 2008. Antibacterial Mechanism of Chitosan Microspheres in a Solid Dispersing System Against E. Coli. Colloids and Surfaces B: Biointerfaces, Vol. 65(2), p. 197-202. DOI: 10.1016/j.colsurfb.2008.04.003
- [36] Sudarshan, N.D., Hoover, D., and Knorr, D. 1992. Antibacterial Action of Chitosan, Food Biotechnology, Vol. 6(3), p. 257-272. DOI: 10.1080/08905439209549838
- [37] Sudjana, A.N., et al. 2009. Antimicrobial Activity of Commercial Olea Europaea (Olive) Leaf Extract, International Journal of Antimicrobial Agents, Vol. 33(5), p. 461-463. DOI: 10.1016/j.ijantimicag.2008.10.026
- [38] Micol, V., et al. 2005. The Olive Leaf Extract Exhibits Antiviral Activity Against Viral Haemorrhagic Septicaemia Rhabdovirus (VHSV), Antiviral Research, Vol. 66(2-3), p. 129-136. DOI: 10.1016/j.antiviral.2005.02.005
- [39] Renis, H.E. 1969. In Vitro Antiviral Activity of Calcium Elenolate, Antimicrobial Agents and Chemotherapy, Vol. 9, p. 167.
- [40] Fleming, H., Walter, W., and Etchells, J. 1969. Isolation of a Bacterial Inhibitor From Green Olives, Applied Microbiology, Vol. 18(5), p. 856-860.
- [41] Hoffman, R., et al. 2010. Olive Leaf Extract, Viitattu, Vol. 5, p. 2010.
- [42] Nejatzadeh-Barandozi, F. 2013. Antibacterial Activities and Antioxidant Capacity of Aloe Vera, Organic and Medicinal Chemistry Letters, Vol. 3(1), p. 5. DOI: 10.1186/2191-2858-3-5
- [43] Alemdar, S., Agaoglu, S. 2009. Investigation of In Vitro Antimicrobial Activity of Aloe Vera Juice, J Anim Vet Adv, Vol. 8(1), p. 99-102.
- [44] Olaleye, M., Bello-Michael, C. 2005. Comparative Antimicrobial Activities of Aloe Vera Gel and Leaf, African Journal of Biotechnology, Vol. 4(12), p. 1413-1414.
- [45] Deopura, B., et al. 2008. Polyesters and Polyamides. CRC Press Woodhead Publishing, Cambridge, 608p.
- [46] Gao, Y., Cranston, R. 2008. Recent Advances in Antimicrobial Treatments of Textiles, Textile Research Journal, Vol. 78(1), p. 60-72. DOI: 10.1177/0040517507082332
- [47] Kenawy, E.R., et al. 2002. Biologically Active Polymers. V. Synthesis and Antimicrobial Activity of Modified Poly (Glycidyl Methacrylate‐Co‐2‐Hydroxyethyl Methacrylate) Derivatives with Quaternary Ammonium and Phosphonium Salts, Journal of Polymer Science Part A: Polymer Chemistry, Vol. 78(1), p. 60-72. DOI: 10.1002/pola.10325
- [48] Huang, K.S., et al. 2008. Application of Low-Molecular-Weight Chitosan in Durable Press Finishing, Carbohydrate Polymers, Vol. 73(2), p. 254-260.
- [49] Ma, Y., Zhou, T., and Zhao, C. 2008. Preparation of Chitosan–Nylon-6 Blended Membranes Containing Silver Ions as Antibacterial Materials, Carbohydrate Research, Vol. 343(2), p. 230-237.
- [50] Strnad, S., et al. 2008. Influence of chemical modification on sorption and mechanical properties of cotton fibers treated with chitosan, Textile Research Journal, Vol. 78(5), p. 390-398.
- [51] Ye, W., et al. 2005. Novel Core-Shell Particles with Poly (N-Butyl Acrylate) Cores and Chitosan Shells as an Antibacterial Coating for Textiles, Polymer, Vol. 46(23), p. 10538-10543. DOI: 10.1016/j.polymer.2005.08.019
- [52] Joshi, M., et al. 2009. Ecofriendly antimicrobial finishing of textiles using bioactive agents based on natural products, Indian Journal of Fibre & Textile Research, Vol. 34(3), p. 295-304.
- [53] Markin, D., Duek, L., and Berdicevski, I. 2003. In Vitro Antimicrobial Activity of Olive Leaves, Antimikrobielle Wirksamkeit von Olivenblättern in vitro, Vol. 46(3-4), p. 132-136.
- [54] Pharmacopeia, U., USP 29–NF 24. Rockville, MD: USP, 2005.
- [55] Masood, R., et al. 2017. In Situ Development and Application of Natural Coatings on Non-Absorbable Sutures to Reduce Incision Site Infections, Journal of Wound Care, Vol. 26(3), p. 115-120. DOI: 10.12968/jowc.2017.26.3.115
- [56] Silverstein, R.M., Bassler, G.C., and Morrill, T.C. 1981. Spectroscopic identification of organic compounds. John Wiley & Sons, New York, 550p.
- [57] Naleway, S.E., et al. 2015. Mechanical Properties of Suture Materials in General and Cutaneous Surgery, Journal of Biomedical Materials Research Part B: Applied Biomaterials, Vol. 103(4), p. 735-742. DOI: 10.1002/jbm.b.33171
- [58] Tera, H. 1976. Tensile Strength of Twelve Types of Knots Employed in Surgery, Using Different Material, Acta Chir. Scand., Vol. 142, p. 83-90.
- [59] Debbabi, F., et al. 2017. Development and Characterization of Antibacterial Braided Polyamide Suture Coated with Chitosan-Citric Acid Biopolymer, Journal of Biomaterials Applications, Vol. 32(3), p. 384-398.
- [60] Yang, Y., et al. 2017. Bacterial Inhibition Potential of Quaternised Chitosan-Coated VICRYL Absorbable Suture: An In Vitro and In Vivo Study, Journal of Orthopaedic Translation, Vol. 8, p. 49-61. DOI: 10.1016/j.jot.2016.10.001
- [61] Li, Y., et al. 2012. New Bactericidal Surgical Suture Coating. Langmuir, Vol. 28(33), p. 12134-12139. DOI: 10.1021/la302732w