Research Article
PDF EndNote BibTex RIS Cite

Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma

Year 2020, Volume 22, Issue 64, 187 - 197, 24.01.2020
https://doi.org/10.21205/deufmd.2020226419

Abstract

Kuvarsın saflaştırılması, içeriğindeki demirin kimyasal yöntemlerle uzaklaştırılıp öncelikli olarak cam, elektronik, deterjan, seramik, boya, refrakter, metalürji sanayilerinde kullanılabilecek hale getirilmesi açısından önemlidir. Bu çalışmada kuvars cevherlerinden özellikle demir gibi safsızlıkların fiziksel ve kimyasal yöntemler ile uzaklaştırılması ve yüksek saflıkta, nitelikli ürün eldesi laboratuar ölçekte araştırılmıştır. Yüksek alan şiddetli manyetik ayırıcı ile manyetik özelliğe sahip safsızlıklar uzaklaştırılmış, liç testlerinde ise farklı asitlerin performansı, sıcaklık, liç süresi, katı/sıvı oranı, ve asit derişimi gibi parametrelerin demir uzaklaştırma verimine etkisi incelenmiştir. Başlangıçta 400 ppm Fe2O3 içeriğine sahip kuvars örneği ile yapılan deneysel çalışmalar sonucunda Fe2O3 içeriği 37,8 ppm’e düşürülmüş, beyazlık indeksi değeri de 87,43’den 96,81’e yükseltilmiştir.

References

  • Breiter, K., Svojtka, M., Ackerman, L., Švecová, C. 2012. Trace Element Composition of Quartz from the Variscan Altenberg–Teplice Caldera (Krušné Hory/Erzgebirge Mts, Czech Republic/Germany): Insights into the Volcano-Plutonic Complex Evolution, Chemical Geology, Cilt. 326-327, s. 36-50. DOI: 10.1016/j.chemgeo.2012.07.028
  • Boussaa, A.S., Kheloufi, A., Zaourar, B.N. 2017. Characterization of Impurities Present on Tihimatine (Hoggar) Quartz, Algeria, Journal of African Earth Sciences, Cilt.135, s. 213–219. DOI: 10.1016/j.jafrearsci.2017.09.001
  • Boussa, A.S., Kheloufi, A., Zaourar, B.N., Kefaifi, A., Kerkar, F. 2016. Characterization of Silica Quartz as Raw Material in Photovoltaic Applications, AIP Conference Proceedings 1758, 030043, DOI: 10.1063/1.4959439
  • Larsen, E., Kleiv, R.A. 2015. Towards a New Process for the Flotation of Quartz, Minerals Engineering, Cilt.83, s. 13–18. DOI: 10.1016/j.mineng.2015.08.004
  • Conibeer, G. Wurfl, I.P., Hao, X., Di, D., Lin, D. 2012. Si Solid-State Quantum Dot-Based Materials for Tandem Solar Cells, Nanoscale Research Letters, Cilt.7, s. 2–7. DOI: 10.1186/1556-276X-7-193
  • Yu, Y., Ming, P., Zhou, S. 2014. Numerical Study on Transient Heat Transfer of a Quartz Lamp Heating System, Mathematical Problems in Engineering, Cilt.2014, 11s. DOI: 10.1155/2014/530476
  • O’Sullivan, C.K., Guilbault, G. G. 1999. Commercial Quartz Crystal Microbalances - Theory and Applications, Biosensors & Bioelectronics, Cilt.14, No. 8–9, s. 663–670. DOI: 10.1016/S0956-5663(99)00040-8
  • Booth, C.F. 1941. The Application and Use of Quartz Crystals in Telecommunications, Electrical Engineers-Part III: Communication Engineering, including the Proceedings of the Wireless Section of the Institution, Journal of the Institution, Cilt.88, No. 2, s. 97. DOI: 10.1049/ji-3-1.1941.0011
  • Nohira, T., Yasuda, K., Ito, Y. 2003. Pinpoint and Bulk Electrochemical Reduction of Insulating Silicon dioxide to Silicon, Nature Materials, Cilt.2, s. 397-401. DOI: 10.1038/nmat900
  • Jin, X., Gao, P., Wang, D., Hu, X., Chen, G.Z. 2004. Electrochemical Preparation of Silicon and its Alloys from Solid Oxides in Molten Calcium Chloride, Angewandte Chemie - International Edition, Cilt.43, No. 6, s. 733–736. DOI: 10.1002/anie.200352786
  • Banza, A.N., Quindt, J., Gock, E. 2006. Improvement of the Quartz Sand Processing at Hohenbocka, International Journal of Mineral Processing, Cilt.79, No. 1, s. 76–82. DOI: 10.1016/j.minpro.2005.11.010
  • Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I., Kontopoulos, A. 1997. Removal of Iron from Silica Sand by Leaching with Oxalic Acid, Hydrometallurgy, Cilt.46, No. 1-2, s. 215-227. DOI: 10.1016/S0304-386X(97)00015-7
  • Akcil, A., Tuncuk, A. 2006. Kaolenlerin Safsızlaştırılmasında Kimyasal ve Biyolojik Yöntemlerin İncelenmesi, Kil Bilimi ve Teknoloji Dergisi, Cilt.1, No. 2, s. 59-69.
  • Tuncuk, A., Akcil, A. 2014. Removal of Iron from Quartz Ore Using Different Acids: A Laboratory-Scale Reactor Study, Mineral Processing and Extractive Metallurgy Review, Cilt.35, No. 4, s. 217–228. DOI: 10.1080/08827508 .2013.825614
  • Cao, W., Xia, G., Lu, M., Huang, H., Xu, Y. 2016. Iron Removal from Kaolin Using Binuclear Rare Earth Complex Activated Thiourea Dioxide, Applied Clay Science, Cilt. 126, s. 63-67. DOI: 10.1016/j.clay.2016.03.002
  • Kheloufi, A. 2009. Acid Leaching Technology for Obtaining a High-Purity of Silica for Photovoltaic Area, Chemical Engineering Transactions, Cilt.17, s. 197-202. DOI: 10.3303/CET0917034
  • Ledgerwood, J., Westhuyzen, P. 2011. The Use of Sulphuric Acid in the Mineral Sands Industry as a Chemical Mechanism for Iron Removal, The Southern African Institute of Mining and Metallurgy, 6th Southern African Base Metals Conference, s. 169-186.
  • Zhang, Z., Li, J., Li, X., Huang, H., Zhou, L., Xiong, T. 2012. High Efficiency Iron Removal from Quartz Sand Using Phosphoric Acid, International Journal of Mineral Processing, Cilt. 114–117, s. 30–34. DOI: 10.1016/j.minpro.2012.09.001
  • Štyriaková, I., Mockovčiaková, A., Štyriak, I., Kraus, I., Uhlik, P., Madejová, J., Orolínová, Z. 2012. Bioleaching of Clays and Iron Oxide Coatings from Quartz Sands, Applied Clay Science, Cilt. 61, s. 1-7. DOI: 10.1016/j.clay.2012.02.020
  • Al-Maghrabi, M.N.H., 2004. Improvement of Low-Grade Silica Sand Deposits in Jeddah Area, Engineering Sciences, Cilt.15, No. 2, s. 113-128. DOI: 10.4197/eng.15-2.8.
  • Suratman, S. 2015. Removal of Metallic Impuruties from Quartz Sand Using Oxalic Acid, Indonesian Mining Journal, Cilt.18, No. 3, s. 133-141. DOI: 10.30556/imj.Vol18.No3.2015.262
  • Anonim, 2001. Sekizinci Beş Yıllık Kalkınma Planı, Madencilik Özel İhtisas Komisyonu Raporu, Endüstriyel Hammaddeler Alt Komisyonu, Toprak Sanayii Hammaddeleri III (Kuvars kumu, Kuvarsit, Kuvars) Çalışma Grubu Raporu, Devlet Planlama Teşkilatı, 37s., Ankara.
  • Ashrafi, H., Emadi, R., Foroushani, Z.R. 2015. Synthesis and Characterization of Mullite–Zirconia Nanostructured Composite by Combined Mechanical Activation and Reaction Sintering, Advanced Powder Technology, Cilt. 26, No. 5, s. 1452-1457. DOI: 10.1016/j.apt.2015.08.001
  • Baláž, P., Achimovičová, M. 2006. Mechano-Chemical Leaching in Hydrometallurgy of Complex Sulphides, Hydrometallurgy, Cilt.84, No. 1-2, s. 60-68. DOI: 10.1016/j.hydromet.2006.04.006
  • Goktas, M. 2018. Cevher Hazirlamada Mekani̇k Akti̇vasyon Uygulamalari, Bilimsel Madencilik Dergisi, Cilt. 57, No. 1, s. 57–66.
  • Liu, A., Fan, M., Fan, P. 2014. Interaction Mechanism of Miscible DDA–Kerosene and Fine Quartz and Its Effect on the Reverse Flotation of Magnetic Separation Concentrate, Minerals Engineering, Cilt.65, s. 41-50. DOI: 10.1016/j.mineng.2014.05.008
  • Ubaldini, S., Piga, L., Fornari, P., Massida, R. 1996. Removal of Iron from Quartz Sands: A study by Column Leaching Using a Complete Factorial Design, Hydrometallurgy, Cilt.40, No. 3, s. 369-379. DOI: 10.1016/0304-386X(95)00012-6
  • Šuba, J., Štyriaková, D. 2015. Iron Minerals Removal from Different Quartz Sands, Procedia Earth and Planetary Science, Cilt. 15, s. 849–854. DOI: 10.1016/j.proeps.2015.08.136
  • Toro, L., Marabini, A.M., Paponetti, B., Passariello, B. 1993. Process for Removing Iron from Kaolin, Quartz and Other Mineral Concentrates of Industrial Interest, United States Patent, Patent Number: 5,190,900
  • Bonney, C. F. 1994. Removal of Iron from Kaolin and Quartz: Dissolution with Organic Acids, Hydrometallurgy’94, Cambridge, United Kingdom, s. 313–323.
  • Veglio, F., Passariello, B., Barbaro, M., Plescia, P., Marabini, A.M. 1998. Drum Leaching Tests in Iron Removal from Quartz Using Qxalic and Sulphuric Acids, International Journal of Mineral Processing, Cilt. 54, No. 3-4, s. 183-200. DOI: 10.1016/S0301-7516(98)00014-3
  • Vegliò, F., Passariello, B., Abbruzzese, C. 1999. Iron Removal Process for High-Purity Silica Sands Production by Oxalic Acid Leaching, Industrial Engineering Chemistry Research, Cilt. 38, No. 11, s. 4443–4448. DOI: 10.1021/ie990156b
  • Du, F., Li, J., Li, X., Zhang, Z. 2011. Improvement of Iron Removal from Silica Sand Using Ultrasound-Assisted Oxalic Acid, Ultrasonics Sonochemistry, Cilt.18, No. 1, s. 389-393. DOI: 10.1016/j.ultsonch.2010.07.006
  • Veglio, F., Toro, L. 1994. Process Development of Kaolin Pressure Bleaching Using Carbohydrates in Acid Media, International Journal of Mineral Processing, Cilt.41, No. 3-4, s. 239-255. DOI: 10.1016/0301-7516(94)90031-0
  • Cameselle, C., Núñez, M.J., Lema, J.M. 1997. Leaching of Kaolin Iron-Oxides with Organic Acids, Journal of Chemical Technology & Biotechnology, Cilt. 70, No. 4, s. 349–354. DOI: 10.1002/(SICI)1097-4660(199712)70:4
  • Tuncuk, A., Ciftlik, S., Akcil, A. 2013. Factorial Experiments for Iron Removal from Kaolin by Using Single and Two-Step Leaching with Sulfuric Acid, Hydrometallurgy, Cilt. 134–135, s. 80–86. DOI: 10.1016/j.hydromet.2013.02.006
  • Cameselle, C., Núñez, M.J., Lema, J.M., Pais, J. 1995. Leaching of Iron from Kaolins by a Spent Fermentation Liquor: Influence of Temperature, pH, Agitation and Citric Acid Concentration Journal of Industrial Microbiology and Biotechnology Cilt.14, No. 3-4, s. 288-292. DOI: 10.1007/BF01569941

Removal of Iron from Quartz Ore by Physical Enrichment and Hydrometallurgical Methods

Year 2020, Volume 22, Issue 64, 187 - 197, 24.01.2020
https://doi.org/10.21205/deufmd.2020226419

Abstract

Removal of impurities (iron in particular) from quartz using aqueous chemical processes is important for its potential use in many industries including detergent, ceramics, paint, refractory, metallurgy and, in particular, glass and electronic industries to fulfill the desired requirements by these industries for high quality quartz as raw material. In this study the removal of impurities, iron in particular, from the quartz ore by physical and chemical methods with the aim of producing high quality quartz with desired specifications were investigated on laboratory scale. Impurities with magnetic properties were removed by high field intense magnetic separator and in leaching tests, the influence of various factors including the performance of acids, reagent type/concentration, temperature, leaching time and solid/liquid ratio and extent of the removal of iron were studied. After the experimental studies with quartz sample, Fe2O3 content was decreased to 37,8 ppm from 400 ppm, whiteness index was also increased to 96,81 from 87,43. 

References

  • Breiter, K., Svojtka, M., Ackerman, L., Švecová, C. 2012. Trace Element Composition of Quartz from the Variscan Altenberg–Teplice Caldera (Krušné Hory/Erzgebirge Mts, Czech Republic/Germany): Insights into the Volcano-Plutonic Complex Evolution, Chemical Geology, Cilt. 326-327, s. 36-50. DOI: 10.1016/j.chemgeo.2012.07.028
  • Boussaa, A.S., Kheloufi, A., Zaourar, B.N. 2017. Characterization of Impurities Present on Tihimatine (Hoggar) Quartz, Algeria, Journal of African Earth Sciences, Cilt.135, s. 213–219. DOI: 10.1016/j.jafrearsci.2017.09.001
  • Boussa, A.S., Kheloufi, A., Zaourar, B.N., Kefaifi, A., Kerkar, F. 2016. Characterization of Silica Quartz as Raw Material in Photovoltaic Applications, AIP Conference Proceedings 1758, 030043, DOI: 10.1063/1.4959439
  • Larsen, E., Kleiv, R.A. 2015. Towards a New Process for the Flotation of Quartz, Minerals Engineering, Cilt.83, s. 13–18. DOI: 10.1016/j.mineng.2015.08.004
  • Conibeer, G. Wurfl, I.P., Hao, X., Di, D., Lin, D. 2012. Si Solid-State Quantum Dot-Based Materials for Tandem Solar Cells, Nanoscale Research Letters, Cilt.7, s. 2–7. DOI: 10.1186/1556-276X-7-193
  • Yu, Y., Ming, P., Zhou, S. 2014. Numerical Study on Transient Heat Transfer of a Quartz Lamp Heating System, Mathematical Problems in Engineering, Cilt.2014, 11s. DOI: 10.1155/2014/530476
  • O’Sullivan, C.K., Guilbault, G. G. 1999. Commercial Quartz Crystal Microbalances - Theory and Applications, Biosensors & Bioelectronics, Cilt.14, No. 8–9, s. 663–670. DOI: 10.1016/S0956-5663(99)00040-8
  • Booth, C.F. 1941. The Application and Use of Quartz Crystals in Telecommunications, Electrical Engineers-Part III: Communication Engineering, including the Proceedings of the Wireless Section of the Institution, Journal of the Institution, Cilt.88, No. 2, s. 97. DOI: 10.1049/ji-3-1.1941.0011
  • Nohira, T., Yasuda, K., Ito, Y. 2003. Pinpoint and Bulk Electrochemical Reduction of Insulating Silicon dioxide to Silicon, Nature Materials, Cilt.2, s. 397-401. DOI: 10.1038/nmat900
  • Jin, X., Gao, P., Wang, D., Hu, X., Chen, G.Z. 2004. Electrochemical Preparation of Silicon and its Alloys from Solid Oxides in Molten Calcium Chloride, Angewandte Chemie - International Edition, Cilt.43, No. 6, s. 733–736. DOI: 10.1002/anie.200352786
  • Banza, A.N., Quindt, J., Gock, E. 2006. Improvement of the Quartz Sand Processing at Hohenbocka, International Journal of Mineral Processing, Cilt.79, No. 1, s. 76–82. DOI: 10.1016/j.minpro.2005.11.010
  • Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I., Kontopoulos, A. 1997. Removal of Iron from Silica Sand by Leaching with Oxalic Acid, Hydrometallurgy, Cilt.46, No. 1-2, s. 215-227. DOI: 10.1016/S0304-386X(97)00015-7
  • Akcil, A., Tuncuk, A. 2006. Kaolenlerin Safsızlaştırılmasında Kimyasal ve Biyolojik Yöntemlerin İncelenmesi, Kil Bilimi ve Teknoloji Dergisi, Cilt.1, No. 2, s. 59-69.
  • Tuncuk, A., Akcil, A. 2014. Removal of Iron from Quartz Ore Using Different Acids: A Laboratory-Scale Reactor Study, Mineral Processing and Extractive Metallurgy Review, Cilt.35, No. 4, s. 217–228. DOI: 10.1080/08827508 .2013.825614
  • Cao, W., Xia, G., Lu, M., Huang, H., Xu, Y. 2016. Iron Removal from Kaolin Using Binuclear Rare Earth Complex Activated Thiourea Dioxide, Applied Clay Science, Cilt. 126, s. 63-67. DOI: 10.1016/j.clay.2016.03.002
  • Kheloufi, A. 2009. Acid Leaching Technology for Obtaining a High-Purity of Silica for Photovoltaic Area, Chemical Engineering Transactions, Cilt.17, s. 197-202. DOI: 10.3303/CET0917034
  • Ledgerwood, J., Westhuyzen, P. 2011. The Use of Sulphuric Acid in the Mineral Sands Industry as a Chemical Mechanism for Iron Removal, The Southern African Institute of Mining and Metallurgy, 6th Southern African Base Metals Conference, s. 169-186.
  • Zhang, Z., Li, J., Li, X., Huang, H., Zhou, L., Xiong, T. 2012. High Efficiency Iron Removal from Quartz Sand Using Phosphoric Acid, International Journal of Mineral Processing, Cilt. 114–117, s. 30–34. DOI: 10.1016/j.minpro.2012.09.001
  • Štyriaková, I., Mockovčiaková, A., Štyriak, I., Kraus, I., Uhlik, P., Madejová, J., Orolínová, Z. 2012. Bioleaching of Clays and Iron Oxide Coatings from Quartz Sands, Applied Clay Science, Cilt. 61, s. 1-7. DOI: 10.1016/j.clay.2012.02.020
  • Al-Maghrabi, M.N.H., 2004. Improvement of Low-Grade Silica Sand Deposits in Jeddah Area, Engineering Sciences, Cilt.15, No. 2, s. 113-128. DOI: 10.4197/eng.15-2.8.
  • Suratman, S. 2015. Removal of Metallic Impuruties from Quartz Sand Using Oxalic Acid, Indonesian Mining Journal, Cilt.18, No. 3, s. 133-141. DOI: 10.30556/imj.Vol18.No3.2015.262
  • Anonim, 2001. Sekizinci Beş Yıllık Kalkınma Planı, Madencilik Özel İhtisas Komisyonu Raporu, Endüstriyel Hammaddeler Alt Komisyonu, Toprak Sanayii Hammaddeleri III (Kuvars kumu, Kuvarsit, Kuvars) Çalışma Grubu Raporu, Devlet Planlama Teşkilatı, 37s., Ankara.
  • Ashrafi, H., Emadi, R., Foroushani, Z.R. 2015. Synthesis and Characterization of Mullite–Zirconia Nanostructured Composite by Combined Mechanical Activation and Reaction Sintering, Advanced Powder Technology, Cilt. 26, No. 5, s. 1452-1457. DOI: 10.1016/j.apt.2015.08.001
  • Baláž, P., Achimovičová, M. 2006. Mechano-Chemical Leaching in Hydrometallurgy of Complex Sulphides, Hydrometallurgy, Cilt.84, No. 1-2, s. 60-68. DOI: 10.1016/j.hydromet.2006.04.006
  • Goktas, M. 2018. Cevher Hazirlamada Mekani̇k Akti̇vasyon Uygulamalari, Bilimsel Madencilik Dergisi, Cilt. 57, No. 1, s. 57–66.
  • Liu, A., Fan, M., Fan, P. 2014. Interaction Mechanism of Miscible DDA–Kerosene and Fine Quartz and Its Effect on the Reverse Flotation of Magnetic Separation Concentrate, Minerals Engineering, Cilt.65, s. 41-50. DOI: 10.1016/j.mineng.2014.05.008
  • Ubaldini, S., Piga, L., Fornari, P., Massida, R. 1996. Removal of Iron from Quartz Sands: A study by Column Leaching Using a Complete Factorial Design, Hydrometallurgy, Cilt.40, No. 3, s. 369-379. DOI: 10.1016/0304-386X(95)00012-6
  • Šuba, J., Štyriaková, D. 2015. Iron Minerals Removal from Different Quartz Sands, Procedia Earth and Planetary Science, Cilt. 15, s. 849–854. DOI: 10.1016/j.proeps.2015.08.136
  • Toro, L., Marabini, A.M., Paponetti, B., Passariello, B. 1993. Process for Removing Iron from Kaolin, Quartz and Other Mineral Concentrates of Industrial Interest, United States Patent, Patent Number: 5,190,900
  • Bonney, C. F. 1994. Removal of Iron from Kaolin and Quartz: Dissolution with Organic Acids, Hydrometallurgy’94, Cambridge, United Kingdom, s. 313–323.
  • Veglio, F., Passariello, B., Barbaro, M., Plescia, P., Marabini, A.M. 1998. Drum Leaching Tests in Iron Removal from Quartz Using Qxalic and Sulphuric Acids, International Journal of Mineral Processing, Cilt. 54, No. 3-4, s. 183-200. DOI: 10.1016/S0301-7516(98)00014-3
  • Vegliò, F., Passariello, B., Abbruzzese, C. 1999. Iron Removal Process for High-Purity Silica Sands Production by Oxalic Acid Leaching, Industrial Engineering Chemistry Research, Cilt. 38, No. 11, s. 4443–4448. DOI: 10.1021/ie990156b
  • Du, F., Li, J., Li, X., Zhang, Z. 2011. Improvement of Iron Removal from Silica Sand Using Ultrasound-Assisted Oxalic Acid, Ultrasonics Sonochemistry, Cilt.18, No. 1, s. 389-393. DOI: 10.1016/j.ultsonch.2010.07.006
  • Veglio, F., Toro, L. 1994. Process Development of Kaolin Pressure Bleaching Using Carbohydrates in Acid Media, International Journal of Mineral Processing, Cilt.41, No. 3-4, s. 239-255. DOI: 10.1016/0301-7516(94)90031-0
  • Cameselle, C., Núñez, M.J., Lema, J.M. 1997. Leaching of Kaolin Iron-Oxides with Organic Acids, Journal of Chemical Technology & Biotechnology, Cilt. 70, No. 4, s. 349–354. DOI: 10.1002/(SICI)1097-4660(199712)70:4
  • Tuncuk, A., Ciftlik, S., Akcil, A. 2013. Factorial Experiments for Iron Removal from Kaolin by Using Single and Two-Step Leaching with Sulfuric Acid, Hydrometallurgy, Cilt. 134–135, s. 80–86. DOI: 10.1016/j.hydromet.2013.02.006
  • Cameselle, C., Núñez, M.J., Lema, J.M., Pais, J. 1995. Leaching of Iron from Kaolins by a Spent Fermentation Liquor: Influence of Temperature, pH, Agitation and Citric Acid Concentration Journal of Industrial Microbiology and Biotechnology Cilt.14, No. 3-4, s. 288-292. DOI: 10.1007/BF01569941

Details

Primary Language Turkish
Journal Section Research Article
Authors

ATA UTKU AKÇİL> (Primary Author)
SÜLEYMAN DEMİREL ÜNİVERSİTESİ
0000-0002-9991-0543
Türkiye


Ayşenur TUNCUK>

0000-0001-9424-0758


Yasemin CANDAN TOSUN>

0000-0003-2452-168X


Mediha Demet OKUDAN>

0000-0002-6014-903X

Supporting Institution SDÜ Bilimsel Araştırma Projeleri Yönetim Birimi
Project Number Proje No: 2217-YL-10
Thanks Bu çalışmanın deneysel işlemleri sırasında kuvars numunesini sağlayan, akredite olmuş Ar-Ge laboratuarlarında analizleri gerçekleştiren Kaltun Madencilik San. ve Tic. A.Ş.’ye teşekkür ederiz. Ayrıca çalışmaların yürütülmesindeki yardımları için Mineral-Metal Kazanım ve Geri Dönüşüm Araştırma Grubu araştırıcılarına teşekkür ederiz. Bu çalışma, SDÜ Bilimsel Araştırma Projeleri Yönetim Birimi (Proje No: 2217-YL-10) tarafından desteklenmiştir.
Publication Date January 24, 2020
Published in Issue Year 2020, Volume 22, Issue 64

Cite

Bibtex @research article { deumffmd565268, journal = {Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi}, issn = {1302-9304}, eissn = {2547-958X}, address = {DOKUZ EYLÜL ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ TINAZTEPE YERLEŞKESİ 35390 BUCA/İZMİR}, publisher = {Dokuz Eylul University}, year = {2020}, volume = {22}, number = {64}, pages = {187 - 197}, doi = {10.21205/deufmd.2020226419}, title = {Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma}, key = {cite}, author = {Akçil, ATA UTKU and Tuncuk, Ayşenur and Candan Tosun, Yasemin and Okudan, Mediha Demet} }
APA Akçil, A. U. , Tuncuk, A. , Candan Tosun, Y. & Okudan, M. D. (2020). Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma . Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi , 22 (64) , 187-197 . DOI: 10.21205/deufmd.2020226419
MLA Akçil, A. U. , Tuncuk, A. , Candan Tosun, Y. , Okudan, M. D. "Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma" . Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 (2020 ): 187-197 <https://dergipark.org.tr/en/pub/deumffmd/issue/51941/565268>
Chicago Akçil, A. U. , Tuncuk, A. , Candan Tosun, Y. , Okudan, M. D. "Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma". Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 (2020 ): 187-197
RIS TY - JOUR T1 - Removal of Iron from Quartz Ore by Physical Enrichment and Hydrometallurgical Methods AU - ATA UTKUAkçil, AyşenurTuncuk, YaseminCandan Tosun, Mediha DemetOkudan Y1 - 2020 PY - 2020 N1 - doi: 10.21205/deufmd.2020226419 DO - 10.21205/deufmd.2020226419 T2 - Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi JF - Journal JO - JOR SP - 187 EP - 197 VL - 22 IS - 64 SN - 1302-9304-2547-958X M3 - doi: 10.21205/deufmd.2020226419 UR - https://doi.org/10.21205/deufmd.2020226419 Y2 - 2019 ER -
EndNote %0 Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma %A ATA UTKU Akçil , Ayşenur Tuncuk , Yasemin Candan Tosun , Mediha Demet Okudan %T Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma %D 2020 %J Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi %P 1302-9304-2547-958X %V 22 %N 64 %R doi: 10.21205/deufmd.2020226419 %U 10.21205/deufmd.2020226419
ISNAD Akçil, ATA UTKU , Tuncuk, Ayşenur , Candan Tosun, Yasemin , Okudan, Mediha Demet . "Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma". Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 / 64 (January 2020): 187-197 . https://doi.org/10.21205/deufmd.2020226419
AMA Akçil A. U. , Tuncuk A. , Candan Tosun Y. , Okudan M. D. Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2020; 22(64): 187-197.
Vancouver Akçil A. U. , Tuncuk A. , Candan Tosun Y. , Okudan M. D. Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi. 2020; 22(64): 187-197.
IEEE A. U. Akçil , A. Tuncuk , Y. Candan Tosun and M. D. Okudan , "Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma", Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi, vol. 22, no. 64, pp. 187-197, Jan. 2020, doi:10.21205/deufmd.2020226419