Loading [a11y]/accessibility-menu.js
Research Article
BibTex RIS Cite

Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma

Year 2020, Volume: 22 Issue: 64, 187 - 197, 24.01.2020
https://doi.org/10.21205/deufmd.2020226419

Abstract



Kuvarsın saflaştırılması,
içeriğindeki demirin kimyasal yöntemlerle uzaklaştırılıp öncelikli olarak cam,
elektronik, deterjan, seramik, boya, refrakter, metalürji sanayilerinde
kullanılabilecek hale getirilmesi açısından önemlidir.
Bu çalışmada kuvars cevherlerinden özellikle demir gibi
safsızlıkların fiziksel ve kimyasal yöntemler ile uzaklaştırılması ve yüksek
saflıkta, nitelikli ürün eldesi laboratuar ölçekte araştırılmıştır. Yüksek alan
şiddetli manyetik ayırıcı ile manyetik özelliğe sahip safsızlıklar
uzaklaştırılmış, liç testlerinde ise farklı asitlerin performansı, sıcaklık,
liç süresi, katı/sıvı oranı, ve asit derişimi gibi parametrelerin demir
uzaklaştırma verimine etkisi incelenmiştir. Başlangıçta 400 ppm Fe2O3
içeriğine sahip kuvars örneği ile yapılan deneysel çalışmalar sonucunda Fe2O3
içeriği 37,8 ppm’e düşürülmüş, beyazlık indeksi değeri de 87,43’den 96,81’e
yükseltilmiştir.


Supporting Institution

SDÜ Bilimsel Araştırma Projeleri Yönetim Birimi

Project Number

Proje No: 2217-YL-10

Thanks

Bu çalışmanın deneysel işlemleri sırasında kuvars numunesini sağlayan, akredite olmuş Ar-Ge laboratuarlarında analizleri gerçekleştiren Kaltun Madencilik San. ve Tic. A.Ş.’ye teşekkür ederiz. Ayrıca çalışmaların yürütülmesindeki yardımları için Mineral-Metal Kazanım ve Geri Dönüşüm Araştırma Grubu araştırıcılarına teşekkür ederiz. Bu çalışma, SDÜ Bilimsel Araştırma Projeleri Yönetim Birimi (Proje No: 2217-YL-10) tarafından desteklenmiştir.

References

  • Breiter, K., Svojtka, M., Ackerman, L., Švecová, C. 2012. Trace Element Composition of Quartz from the Variscan Altenberg–Teplice Caldera (Krušné Hory/Erzgebirge Mts, Czech Republic/Germany): Insights into the Volcano-Plutonic Complex Evolution, Chemical Geology, Cilt. 326-327, s. 36-50. DOI: 10.1016/j.chemgeo.2012.07.028
  • Boussaa, A.S., Kheloufi, A., Zaourar, B.N. 2017. Characterization of Impurities Present on Tihimatine (Hoggar) Quartz, Algeria, Journal of African Earth Sciences, Cilt.135, s. 213–219. DOI: 10.1016/j.jafrearsci.2017.09.001
  • Boussa, A.S., Kheloufi, A., Zaourar, B.N., Kefaifi, A., Kerkar, F. 2016. Characterization of Silica Quartz as Raw Material in Photovoltaic Applications, AIP Conference Proceedings 1758, 030043, DOI: 10.1063/1.4959439
  • Larsen, E., Kleiv, R.A. 2015. Towards a New Process for the Flotation of Quartz, Minerals Engineering, Cilt.83, s. 13–18. DOI: 10.1016/j.mineng.2015.08.004
  • Conibeer, G. Wurfl, I.P., Hao, X., Di, D., Lin, D. 2012. Si Solid-State Quantum Dot-Based Materials for Tandem Solar Cells, Nanoscale Research Letters, Cilt.7, s. 2–7. DOI: 10.1186/1556-276X-7-193
  • Yu, Y., Ming, P., Zhou, S. 2014. Numerical Study on Transient Heat Transfer of a Quartz Lamp Heating System, Mathematical Problems in Engineering, Cilt.2014, 11s. DOI: 10.1155/2014/530476
  • O’Sullivan, C.K., Guilbault, G. G. 1999. Commercial Quartz Crystal Microbalances - Theory and Applications, Biosensors & Bioelectronics, Cilt.14, No. 8–9, s. 663–670. DOI: 10.1016/S0956-5663(99)00040-8
  • Booth, C.F. 1941. The Application and Use of Quartz Crystals in Telecommunications, Electrical Engineers-Part III: Communication Engineering, including the Proceedings of the Wireless Section of the Institution, Journal of the Institution, Cilt.88, No. 2, s. 97. DOI: 10.1049/ji-3-1.1941.0011
  • Nohira, T., Yasuda, K., Ito, Y. 2003. Pinpoint and Bulk Electrochemical Reduction of Insulating Silicon dioxide to Silicon, Nature Materials, Cilt.2, s. 397-401. DOI: 10.1038/nmat900
  • Jin, X., Gao, P., Wang, D., Hu, X., Chen, G.Z. 2004. Electrochemical Preparation of Silicon and its Alloys from Solid Oxides in Molten Calcium Chloride, Angewandte Chemie - International Edition, Cilt.43, No. 6, s. 733–736. DOI: 10.1002/anie.200352786
  • Banza, A.N., Quindt, J., Gock, E. 2006. Improvement of the Quartz Sand Processing at Hohenbocka, International Journal of Mineral Processing, Cilt.79, No. 1, s. 76–82. DOI: 10.1016/j.minpro.2005.11.010
  • Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I., Kontopoulos, A. 1997. Removal of Iron from Silica Sand by Leaching with Oxalic Acid, Hydrometallurgy, Cilt.46, No. 1-2, s. 215-227. DOI: 10.1016/S0304-386X(97)00015-7
  • Akcil, A., Tuncuk, A. 2006. Kaolenlerin Safsızlaştırılmasında Kimyasal ve Biyolojik Yöntemlerin İncelenmesi, Kil Bilimi ve Teknoloji Dergisi, Cilt.1, No. 2, s. 59-69.
  • Tuncuk, A., Akcil, A. 2014. Removal of Iron from Quartz Ore Using Different Acids: A Laboratory-Scale Reactor Study, Mineral Processing and Extractive Metallurgy Review, Cilt.35, No. 4, s. 217–228. DOI: 10.1080/08827508 .2013.825614
  • Cao, W., Xia, G., Lu, M., Huang, H., Xu, Y. 2016. Iron Removal from Kaolin Using Binuclear Rare Earth Complex Activated Thiourea Dioxide, Applied Clay Science, Cilt. 126, s. 63-67. DOI: 10.1016/j.clay.2016.03.002
  • Kheloufi, A. 2009. Acid Leaching Technology for Obtaining a High-Purity of Silica for Photovoltaic Area, Chemical Engineering Transactions, Cilt.17, s. 197-202. DOI: 10.3303/CET0917034
  • Ledgerwood, J., Westhuyzen, P. 2011. The Use of Sulphuric Acid in the Mineral Sands Industry as a Chemical Mechanism for Iron Removal, The Southern African Institute of Mining and Metallurgy, 6th Southern African Base Metals Conference, s. 169-186.
  • Zhang, Z., Li, J., Li, X., Huang, H., Zhou, L., Xiong, T. 2012. High Efficiency Iron Removal from Quartz Sand Using Phosphoric Acid, International Journal of Mineral Processing, Cilt. 114–117, s. 30–34. DOI: 10.1016/j.minpro.2012.09.001
  • Štyriaková, I., Mockovčiaková, A., Štyriak, I., Kraus, I., Uhlik, P., Madejová, J., Orolínová, Z. 2012. Bioleaching of Clays and Iron Oxide Coatings from Quartz Sands, Applied Clay Science, Cilt. 61, s. 1-7. DOI: 10.1016/j.clay.2012.02.020
  • Al-Maghrabi, M.N.H., 2004. Improvement of Low-Grade Silica Sand Deposits in Jeddah Area, Engineering Sciences, Cilt.15, No. 2, s. 113-128. DOI: 10.4197/eng.15-2.8.
  • Suratman, S. 2015. Removal of Metallic Impuruties from Quartz Sand Using Oxalic Acid, Indonesian Mining Journal, Cilt.18, No. 3, s. 133-141. DOI: 10.30556/imj.Vol18.No3.2015.262
  • Anonim, 2001. Sekizinci Beş Yıllık Kalkınma Planı, Madencilik Özel İhtisas Komisyonu Raporu, Endüstriyel Hammaddeler Alt Komisyonu, Toprak Sanayii Hammaddeleri III (Kuvars kumu, Kuvarsit, Kuvars) Çalışma Grubu Raporu, Devlet Planlama Teşkilatı, 37s., Ankara.
  • Ashrafi, H., Emadi, R., Foroushani, Z.R. 2015. Synthesis and Characterization of Mullite–Zirconia Nanostructured Composite by Combined Mechanical Activation and Reaction Sintering, Advanced Powder Technology, Cilt. 26, No. 5, s. 1452-1457. DOI: 10.1016/j.apt.2015.08.001
  • Baláž, P., Achimovičová, M. 2006. Mechano-Chemical Leaching in Hydrometallurgy of Complex Sulphides, Hydrometallurgy, Cilt.84, No. 1-2, s. 60-68. DOI: 10.1016/j.hydromet.2006.04.006
  • Goktas, M. 2018. Cevher Hazirlamada Mekani̇k Akti̇vasyon Uygulamalari, Bilimsel Madencilik Dergisi, Cilt. 57, No. 1, s. 57–66.
  • Liu, A., Fan, M., Fan, P. 2014. Interaction Mechanism of Miscible DDA–Kerosene and Fine Quartz and Its Effect on the Reverse Flotation of Magnetic Separation Concentrate, Minerals Engineering, Cilt.65, s. 41-50. DOI: 10.1016/j.mineng.2014.05.008
  • Ubaldini, S., Piga, L., Fornari, P., Massida, R. 1996. Removal of Iron from Quartz Sands: A study by Column Leaching Using a Complete Factorial Design, Hydrometallurgy, Cilt.40, No. 3, s. 369-379. DOI: 10.1016/0304-386X(95)00012-6
  • Šuba, J., Štyriaková, D. 2015. Iron Minerals Removal from Different Quartz Sands, Procedia Earth and Planetary Science, Cilt. 15, s. 849–854. DOI: 10.1016/j.proeps.2015.08.136
  • Toro, L., Marabini, A.M., Paponetti, B., Passariello, B. 1993. Process for Removing Iron from Kaolin, Quartz and Other Mineral Concentrates of Industrial Interest, United States Patent, Patent Number: 5,190,900
  • Bonney, C. F. 1994. Removal of Iron from Kaolin and Quartz: Dissolution with Organic Acids, Hydrometallurgy’94, Cambridge, United Kingdom, s. 313–323.
  • Veglio, F., Passariello, B., Barbaro, M., Plescia, P., Marabini, A.M. 1998. Drum Leaching Tests in Iron Removal from Quartz Using Qxalic and Sulphuric Acids, International Journal of Mineral Processing, Cilt. 54, No. 3-4, s. 183-200. DOI: 10.1016/S0301-7516(98)00014-3
  • Vegliò, F., Passariello, B., Abbruzzese, C. 1999. Iron Removal Process for High-Purity Silica Sands Production by Oxalic Acid Leaching, Industrial Engineering Chemistry Research, Cilt. 38, No. 11, s. 4443–4448. DOI: 10.1021/ie990156b
  • Du, F., Li, J., Li, X., Zhang, Z. 2011. Improvement of Iron Removal from Silica Sand Using Ultrasound-Assisted Oxalic Acid, Ultrasonics Sonochemistry, Cilt.18, No. 1, s. 389-393. DOI: 10.1016/j.ultsonch.2010.07.006
  • Veglio, F., Toro, L. 1994. Process Development of Kaolin Pressure Bleaching Using Carbohydrates in Acid Media, International Journal of Mineral Processing, Cilt.41, No. 3-4, s. 239-255. DOI: 10.1016/0301-7516(94)90031-0
  • Cameselle, C., Núñez, M.J., Lema, J.M. 1997. Leaching of Kaolin Iron-Oxides with Organic Acids, Journal of Chemical Technology & Biotechnology, Cilt. 70, No. 4, s. 349–354. DOI: 10.1002/(SICI)1097-4660(199712)70:4
  • Tuncuk, A., Ciftlik, S., Akcil, A. 2013. Factorial Experiments for Iron Removal from Kaolin by Using Single and Two-Step Leaching with Sulfuric Acid, Hydrometallurgy, Cilt. 134–135, s. 80–86. DOI: 10.1016/j.hydromet.2013.02.006
  • Cameselle, C., Núñez, M.J., Lema, J.M., Pais, J. 1995. Leaching of Iron from Kaolins by a Spent Fermentation Liquor: Influence of Temperature, pH, Agitation and Citric Acid Concentration Journal of Industrial Microbiology and Biotechnology Cilt.14, No. 3-4, s. 288-292. DOI: 10.1007/BF01569941

Removal of Iron from Quartz Ore by Physical Enrichment and Hydrometallurgical Methods

Year 2020, Volume: 22 Issue: 64, 187 - 197, 24.01.2020
https://doi.org/10.21205/deufmd.2020226419

Abstract

Removal of
impurities (iron in particular) from quartz using aqueous chemical processes is
important for its potential use in many industries including detergent,
ceramics, paint, refractory, metallurgy and, in particular, glass and
electronic industries to fulfill the desired requirements by these industries
for high quality quartz as raw material.
In this study the removal of
impurities, iron in particular, from the quartz ore by physical and chemical
methods with the aim of producing high quality quartz with desired
specifications were investigated on laboratory scale. Impurities with magnetic
properties were removed by high field intense magnetic separator and in
leaching tests, the influence of various factors including the performance of
acids, reagent type/concentration, temperature, leaching time and solid/liquid
ratio and extent of the removal of iron were studied. After the experimental
studies with quartz sample, Fe2O3 content was decreased
to 37,8 ppm from 400 ppm, whiteness index was also increased to 96,81 from
87,43. 

Project Number

Proje No: 2217-YL-10

References

  • Breiter, K., Svojtka, M., Ackerman, L., Švecová, C. 2012. Trace Element Composition of Quartz from the Variscan Altenberg–Teplice Caldera (Krušné Hory/Erzgebirge Mts, Czech Republic/Germany): Insights into the Volcano-Plutonic Complex Evolution, Chemical Geology, Cilt. 326-327, s. 36-50. DOI: 10.1016/j.chemgeo.2012.07.028
  • Boussaa, A.S., Kheloufi, A., Zaourar, B.N. 2017. Characterization of Impurities Present on Tihimatine (Hoggar) Quartz, Algeria, Journal of African Earth Sciences, Cilt.135, s. 213–219. DOI: 10.1016/j.jafrearsci.2017.09.001
  • Boussa, A.S., Kheloufi, A., Zaourar, B.N., Kefaifi, A., Kerkar, F. 2016. Characterization of Silica Quartz as Raw Material in Photovoltaic Applications, AIP Conference Proceedings 1758, 030043, DOI: 10.1063/1.4959439
  • Larsen, E., Kleiv, R.A. 2015. Towards a New Process for the Flotation of Quartz, Minerals Engineering, Cilt.83, s. 13–18. DOI: 10.1016/j.mineng.2015.08.004
  • Conibeer, G. Wurfl, I.P., Hao, X., Di, D., Lin, D. 2012. Si Solid-State Quantum Dot-Based Materials for Tandem Solar Cells, Nanoscale Research Letters, Cilt.7, s. 2–7. DOI: 10.1186/1556-276X-7-193
  • Yu, Y., Ming, P., Zhou, S. 2014. Numerical Study on Transient Heat Transfer of a Quartz Lamp Heating System, Mathematical Problems in Engineering, Cilt.2014, 11s. DOI: 10.1155/2014/530476
  • O’Sullivan, C.K., Guilbault, G. G. 1999. Commercial Quartz Crystal Microbalances - Theory and Applications, Biosensors & Bioelectronics, Cilt.14, No. 8–9, s. 663–670. DOI: 10.1016/S0956-5663(99)00040-8
  • Booth, C.F. 1941. The Application and Use of Quartz Crystals in Telecommunications, Electrical Engineers-Part III: Communication Engineering, including the Proceedings of the Wireless Section of the Institution, Journal of the Institution, Cilt.88, No. 2, s. 97. DOI: 10.1049/ji-3-1.1941.0011
  • Nohira, T., Yasuda, K., Ito, Y. 2003. Pinpoint and Bulk Electrochemical Reduction of Insulating Silicon dioxide to Silicon, Nature Materials, Cilt.2, s. 397-401. DOI: 10.1038/nmat900
  • Jin, X., Gao, P., Wang, D., Hu, X., Chen, G.Z. 2004. Electrochemical Preparation of Silicon and its Alloys from Solid Oxides in Molten Calcium Chloride, Angewandte Chemie - International Edition, Cilt.43, No. 6, s. 733–736. DOI: 10.1002/anie.200352786
  • Banza, A.N., Quindt, J., Gock, E. 2006. Improvement of the Quartz Sand Processing at Hohenbocka, International Journal of Mineral Processing, Cilt.79, No. 1, s. 76–82. DOI: 10.1016/j.minpro.2005.11.010
  • Taxiarchou, M., Panias, D., Douni, I., Paspaliaris, I., Kontopoulos, A. 1997. Removal of Iron from Silica Sand by Leaching with Oxalic Acid, Hydrometallurgy, Cilt.46, No. 1-2, s. 215-227. DOI: 10.1016/S0304-386X(97)00015-7
  • Akcil, A., Tuncuk, A. 2006. Kaolenlerin Safsızlaştırılmasında Kimyasal ve Biyolojik Yöntemlerin İncelenmesi, Kil Bilimi ve Teknoloji Dergisi, Cilt.1, No. 2, s. 59-69.
  • Tuncuk, A., Akcil, A. 2014. Removal of Iron from Quartz Ore Using Different Acids: A Laboratory-Scale Reactor Study, Mineral Processing and Extractive Metallurgy Review, Cilt.35, No. 4, s. 217–228. DOI: 10.1080/08827508 .2013.825614
  • Cao, W., Xia, G., Lu, M., Huang, H., Xu, Y. 2016. Iron Removal from Kaolin Using Binuclear Rare Earth Complex Activated Thiourea Dioxide, Applied Clay Science, Cilt. 126, s. 63-67. DOI: 10.1016/j.clay.2016.03.002
  • Kheloufi, A. 2009. Acid Leaching Technology for Obtaining a High-Purity of Silica for Photovoltaic Area, Chemical Engineering Transactions, Cilt.17, s. 197-202. DOI: 10.3303/CET0917034
  • Ledgerwood, J., Westhuyzen, P. 2011. The Use of Sulphuric Acid in the Mineral Sands Industry as a Chemical Mechanism for Iron Removal, The Southern African Institute of Mining and Metallurgy, 6th Southern African Base Metals Conference, s. 169-186.
  • Zhang, Z., Li, J., Li, X., Huang, H., Zhou, L., Xiong, T. 2012. High Efficiency Iron Removal from Quartz Sand Using Phosphoric Acid, International Journal of Mineral Processing, Cilt. 114–117, s. 30–34. DOI: 10.1016/j.minpro.2012.09.001
  • Štyriaková, I., Mockovčiaková, A., Štyriak, I., Kraus, I., Uhlik, P., Madejová, J., Orolínová, Z. 2012. Bioleaching of Clays and Iron Oxide Coatings from Quartz Sands, Applied Clay Science, Cilt. 61, s. 1-7. DOI: 10.1016/j.clay.2012.02.020
  • Al-Maghrabi, M.N.H., 2004. Improvement of Low-Grade Silica Sand Deposits in Jeddah Area, Engineering Sciences, Cilt.15, No. 2, s. 113-128. DOI: 10.4197/eng.15-2.8.
  • Suratman, S. 2015. Removal of Metallic Impuruties from Quartz Sand Using Oxalic Acid, Indonesian Mining Journal, Cilt.18, No. 3, s. 133-141. DOI: 10.30556/imj.Vol18.No3.2015.262
  • Anonim, 2001. Sekizinci Beş Yıllık Kalkınma Planı, Madencilik Özel İhtisas Komisyonu Raporu, Endüstriyel Hammaddeler Alt Komisyonu, Toprak Sanayii Hammaddeleri III (Kuvars kumu, Kuvarsit, Kuvars) Çalışma Grubu Raporu, Devlet Planlama Teşkilatı, 37s., Ankara.
  • Ashrafi, H., Emadi, R., Foroushani, Z.R. 2015. Synthesis and Characterization of Mullite–Zirconia Nanostructured Composite by Combined Mechanical Activation and Reaction Sintering, Advanced Powder Technology, Cilt. 26, No. 5, s. 1452-1457. DOI: 10.1016/j.apt.2015.08.001
  • Baláž, P., Achimovičová, M. 2006. Mechano-Chemical Leaching in Hydrometallurgy of Complex Sulphides, Hydrometallurgy, Cilt.84, No. 1-2, s. 60-68. DOI: 10.1016/j.hydromet.2006.04.006
  • Goktas, M. 2018. Cevher Hazirlamada Mekani̇k Akti̇vasyon Uygulamalari, Bilimsel Madencilik Dergisi, Cilt. 57, No. 1, s. 57–66.
  • Liu, A., Fan, M., Fan, P. 2014. Interaction Mechanism of Miscible DDA–Kerosene and Fine Quartz and Its Effect on the Reverse Flotation of Magnetic Separation Concentrate, Minerals Engineering, Cilt.65, s. 41-50. DOI: 10.1016/j.mineng.2014.05.008
  • Ubaldini, S., Piga, L., Fornari, P., Massida, R. 1996. Removal of Iron from Quartz Sands: A study by Column Leaching Using a Complete Factorial Design, Hydrometallurgy, Cilt.40, No. 3, s. 369-379. DOI: 10.1016/0304-386X(95)00012-6
  • Šuba, J., Štyriaková, D. 2015. Iron Minerals Removal from Different Quartz Sands, Procedia Earth and Planetary Science, Cilt. 15, s. 849–854. DOI: 10.1016/j.proeps.2015.08.136
  • Toro, L., Marabini, A.M., Paponetti, B., Passariello, B. 1993. Process for Removing Iron from Kaolin, Quartz and Other Mineral Concentrates of Industrial Interest, United States Patent, Patent Number: 5,190,900
  • Bonney, C. F. 1994. Removal of Iron from Kaolin and Quartz: Dissolution with Organic Acids, Hydrometallurgy’94, Cambridge, United Kingdom, s. 313–323.
  • Veglio, F., Passariello, B., Barbaro, M., Plescia, P., Marabini, A.M. 1998. Drum Leaching Tests in Iron Removal from Quartz Using Qxalic and Sulphuric Acids, International Journal of Mineral Processing, Cilt. 54, No. 3-4, s. 183-200. DOI: 10.1016/S0301-7516(98)00014-3
  • Vegliò, F., Passariello, B., Abbruzzese, C. 1999. Iron Removal Process for High-Purity Silica Sands Production by Oxalic Acid Leaching, Industrial Engineering Chemistry Research, Cilt. 38, No. 11, s. 4443–4448. DOI: 10.1021/ie990156b
  • Du, F., Li, J., Li, X., Zhang, Z. 2011. Improvement of Iron Removal from Silica Sand Using Ultrasound-Assisted Oxalic Acid, Ultrasonics Sonochemistry, Cilt.18, No. 1, s. 389-393. DOI: 10.1016/j.ultsonch.2010.07.006
  • Veglio, F., Toro, L. 1994. Process Development of Kaolin Pressure Bleaching Using Carbohydrates in Acid Media, International Journal of Mineral Processing, Cilt.41, No. 3-4, s. 239-255. DOI: 10.1016/0301-7516(94)90031-0
  • Cameselle, C., Núñez, M.J., Lema, J.M. 1997. Leaching of Kaolin Iron-Oxides with Organic Acids, Journal of Chemical Technology & Biotechnology, Cilt. 70, No. 4, s. 349–354. DOI: 10.1002/(SICI)1097-4660(199712)70:4
  • Tuncuk, A., Ciftlik, S., Akcil, A. 2013. Factorial Experiments for Iron Removal from Kaolin by Using Single and Two-Step Leaching with Sulfuric Acid, Hydrometallurgy, Cilt. 134–135, s. 80–86. DOI: 10.1016/j.hydromet.2013.02.006
  • Cameselle, C., Núñez, M.J., Lema, J.M., Pais, J. 1995. Leaching of Iron from Kaolins by a Spent Fermentation Liquor: Influence of Temperature, pH, Agitation and Citric Acid Concentration Journal of Industrial Microbiology and Biotechnology Cilt.14, No. 3-4, s. 288-292. DOI: 10.1007/BF01569941
There are 37 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

ATA UTKU Akçil 0000-0002-9991-0543

Ayşenur Tuncuk 0000-0001-9424-0758

Yasemin Candan Tosun 0000-0003-2452-168X

Mediha Demet Okudan

Project Number Proje No: 2217-YL-10
Publication Date January 24, 2020
Published in Issue Year 2020 Volume: 22 Issue: 64

Cite

APA Akçil, A. U., Tuncuk, A., Candan Tosun, Y., Okudan, M. D. (2020). Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(64), 187-197. https://doi.org/10.21205/deufmd.2020226419
AMA Akçil AU, Tuncuk A, Candan Tosun Y, Okudan MD. Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma. DEUFMD. January 2020;22(64):187-197. doi:10.21205/deufmd.2020226419
Chicago Akçil, ATA UTKU, Ayşenur Tuncuk, Yasemin Candan Tosun, and Mediha Demet Okudan. “Fiziksel Zenginleştirme Ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, no. 64 (January 2020): 187-97. https://doi.org/10.21205/deufmd.2020226419.
EndNote Akçil AU, Tuncuk A, Candan Tosun Y, Okudan MD (January 1, 2020) Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 64 187–197.
IEEE A. U. Akçil, A. Tuncuk, Y. Candan Tosun, and M. D. Okudan, “Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma”, DEUFMD, vol. 22, no. 64, pp. 187–197, 2020, doi: 10.21205/deufmd.2020226419.
ISNAD Akçil, ATA UTKU et al. “Fiziksel Zenginleştirme Ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/64 (January 2020), 187-197. https://doi.org/10.21205/deufmd.2020226419.
JAMA Akçil AU, Tuncuk A, Candan Tosun Y, Okudan MD. Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma. DEUFMD. 2020;22:187–197.
MLA Akçil, ATA UTKU et al. “Fiziksel Zenginleştirme Ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 22, no. 64, 2020, pp. 187-9, doi:10.21205/deufmd.2020226419.
Vancouver Akçil AU, Tuncuk A, Candan Tosun Y, Okudan MD. Fiziksel Zenginleştirme ve Hidrometalurjik Yöntemlerle Kuvars Cevherinden Demir Uzaklaştırma. DEUFMD. 2020;22(64):187-9.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.