Research Article
BibTex RIS Cite

Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials

Year 2020, Volume: 22 Issue: 65, 325 - 330, 15.05.2020
https://doi.org/10.21205/deufmd.2020226502

Abstract

As compared to other
semiconductor photocatalysts, titanium dioxide has
so far
been shown
to be
the  most promising material used
for both
fundamental research and practical applications,
because it exhibits a
higher photoreactivity and it is
cheap, nontoxic, chemically and biologically
inert, and photostable. Rare earth ions (RE3+)
are preferred
as dopant
elements due to their high
densities and  high
light yields. Tb3+ doped
TiO
2nanoparticles offer
several advantages such as broad absorption
band, high emission intensity, long
lifetime, stability. TiO
2: 1%Tb3+ nanoparticles, were produced
at 550
degrees by the sol-gel method.
Particle size analysis, XRD, DTA-TG,
FTIR, SEM, and PL analyzes 
of  the synthesized nanomaterials were performed. In
the anatase
crystal structure, the dimensions
of the
nanoparticles were measured below 100
nm and
were observed
in the 
microstructure where the  particles
were clustered
in places.
When the
nanoparticles were excited at 275 nm,
green emission bands of Tb3+
ions at 544 nm and 585
nm were
observed. This wavelength is attributed to
electronic transitions 5D
4 7F5
and 5D4
  7F4,
respectively.

References

  • [1] Dastjerdi R and Montazer M 2010. A review on the application of inorganic nanostructured materials in the modification of textiles: focus on anti-microbial properties Colloids Surfaces B Biointerfaces 79 5–18. DOI: 10.1016/j.colsurfb.2010.03.029
  • [2] Varghese O K, Paulose M, LaTempa T J, and Grimes C A 2009 High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels Nano Lett. 9 731–7. DOI: 10.1021/nl803258p
  • [3] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, and Bahnemann D W 2014 Understanding TiO2 photocatalysis: mechanisms and materials Chem. Rev. 114 9919–86. DOI: 10.1021/cr5001892
  • [4] Carp O, Huisman C L and Reller A 2004 Photoinduced reactivity of titanium dioxide Prog. solid-state Chem. 32 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001
  • [5] Zhang H and Banfield J F 2000 Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 J. Phys. Chem. B 104 3481–7. DOI: 10.1021/jp000499j
  • [6] Ahmed S. N. 2015. Physics and Engineering of Radiation Detection. Academic Press- ELSEVIER. 764s.
  • [7] Weber E M J, Dotsenko a V, Glebov L B, and Tsekhomsky V a 2003 Handbook of Optical Laser and Optical Science and Technology Series Physics and Chemistry of Photochromic Glasses vol 23.
  • [8] Kango S, Kalia S, Celli A, Njuguna J, Habibi Y and Kumar R 2013 Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review Prog. Polym. Sci. 38 1232–61. DOI: 10.1016/j.progpolymsci.2013.02.003
  • [9] Yang, T. T. T. (Ed.). 2012. Rare Earth Nanotechnology. CRC Press. 249s.
  • [10] Xu A-W, Gao Y and Liu H-Q 2002 The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles J. Catal. 207 151–7. DOI: 10.1006/jcat.2002.3539
  • [11] Liqiang J, Xiaojun S, Baifu X, Baiqi W, Weimin C and Honggang F 2004 The preparation and characterization of La-doped TiO2 nanoparticles and their photocatalytic activity J. Solid State Chem. 177 3375–82. DOI: 10.1016/j.jssc.2004.05.064
  • [12] Lü X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F and Huang S 2010 Improved‐performance dye‐sensitized solar cells using Nb‐doped TiO2 electrodes: efficient electron injection and transfer Adv. Funct. Mater. 20 509–15. DOI: 10.1002/adfm.200901292
  • [13] Patra A, Friend C S, Kapoor R and Prasad P N 2003 Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites Chem. Mater. 15 3650–5. DOI: 10.1021/cm020897u
  • [14] Wang J, Polleux J, Lim J and Dunn B 2007 Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles J. Phys. Chem. C 111 14925–31. DOI: 10.1021/jp074464w
  • [15] Wang Y and Herron N 1991 Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties J. Phys. Chem. 95 525–32.
  • [16] Souza A S, Nunes L A, Felinto M, Brito H F and Malta O L 2015 On the quenching of trivalent terbium luminescence by ligand low lying triplet state energy and the role of the 7F5 level: The [Tb (tta) 3 (H2O) 2] case J. Lumin. 167 167–71. DOI: 10.1016/j.jlumin.2015.06.020
  • [17] Ðorđević V, Milićević B and Dramićanin M D 2017 Rare Earth‐Doped Anatase TiO2 Nanoparticles Titanium Dioxide (InTech). DOI: 10.5772/intechopen.68882
  • [18] Zheng C, Teng C P, Yang D-P, Lin M, Win K Y, Li Z and Ye E 2017 Fabrication of luminescent TiO2: Eu3+ and ZrO2: Tb3+ encapsulated PLGA microparticles for bioimaging application with enhanced biocompatibility Mater. Sci. Eng. C. DOI: 10.1016/j.msec.2017.10.005

Tb3+ ile Aktive Edilmiş TiO2 Fotolüminesans Nanomalzemelerin Sentezi ve Karakterizasyonu

Year 2020, Volume: 22 Issue: 65, 325 - 330, 15.05.2020
https://doi.org/10.21205/deufmd.2020226502

Abstract

Diğer fotokatalitik yarı iletkenlere
kıyasla, titanyum dioksitin şimdiye dek
hem temel
araştırmalarda   hem de
pratik uygulamalarda kullanılan en umut
verici malzeme olduğu gösterilmiştir,
çünkü daha yüksek bir foto
reaktivite sergiler ve ucuz, toksik
olmayan, kimyasal ve biyolojik olarak etkisiz
ve 
kararlıdır. Nadir toprak
iyonları (RE3+),
yüksek yoğunlukları ve yüksek ışık verimleri nedeniyle
dopant elementler olarak tercih edilir.
Tb3+ katkılı TiO
2nanopartikülleri,
geniş emme bandı, yüksek 
emisyon yoğunluğu, uzun ömür, stabilite
gibi birçok
avantaj sunar. Ti02:%1 Tb3+ nanopartiküller sol-jel
yöntemi ile 550
oC’ de üretildi. Sentezlenen
nanomalzemelerin
partikül boyut
analizi, XRD, DTA-TG, FTIR, SEM
ve PL
(photo luminescence) analizleri yapılmıştır.
Anataz kristal yapısında, nanopartiküllerin
boyutları 100 nm'nin altında ölçülmüş
ve partiküllerin
yer yer kümelendiği mikroyapıda gözlenmiştir. Nanopartiküller 275 nm'de uyarıldığında,
544 nm
ve 585 nm'de Tb3+ iyonlarının yeşil
emisyon bantları gözlenmiştir. Bu dalga
uzunluğu, sırasıyla 5D
4 7F5
and 5D4
  7F4  elektronik
geçişlerine bağlanmaktadır.

References

  • [1] Dastjerdi R and Montazer M 2010. A review on the application of inorganic nanostructured materials in the modification of textiles: focus on anti-microbial properties Colloids Surfaces B Biointerfaces 79 5–18. DOI: 10.1016/j.colsurfb.2010.03.029
  • [2] Varghese O K, Paulose M, LaTempa T J, and Grimes C A 2009 High-rate solar photocatalytic conversion of CO2 and water vapor to hydrocarbon fuels Nano Lett. 9 731–7. DOI: 10.1021/nl803258p
  • [3] Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, and Bahnemann D W 2014 Understanding TiO2 photocatalysis: mechanisms and materials Chem. Rev. 114 9919–86. DOI: 10.1021/cr5001892
  • [4] Carp O, Huisman C L and Reller A 2004 Photoinduced reactivity of titanium dioxide Prog. solid-state Chem. 32 33–177. DOI: 10.1016/j.progsolidstchem.2004.08.001
  • [5] Zhang H and Banfield J F 2000 Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2 J. Phys. Chem. B 104 3481–7. DOI: 10.1021/jp000499j
  • [6] Ahmed S. N. 2015. Physics and Engineering of Radiation Detection. Academic Press- ELSEVIER. 764s.
  • [7] Weber E M J, Dotsenko a V, Glebov L B, and Tsekhomsky V a 2003 Handbook of Optical Laser and Optical Science and Technology Series Physics and Chemistry of Photochromic Glasses vol 23.
  • [8] Kango S, Kalia S, Celli A, Njuguna J, Habibi Y and Kumar R 2013 Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—A review Prog. Polym. Sci. 38 1232–61. DOI: 10.1016/j.progpolymsci.2013.02.003
  • [9] Yang, T. T. T. (Ed.). 2012. Rare Earth Nanotechnology. CRC Press. 249s.
  • [10] Xu A-W, Gao Y and Liu H-Q 2002 The preparation, characterization, and their photocatalytic activities of rare-earth-doped TiO2 nanoparticles J. Catal. 207 151–7. DOI: 10.1006/jcat.2002.3539
  • [11] Liqiang J, Xiaojun S, Baifu X, Baiqi W, Weimin C and Honggang F 2004 The preparation and characterization of La-doped TiO2 nanoparticles and their photocatalytic activity J. Solid State Chem. 177 3375–82. DOI: 10.1016/j.jssc.2004.05.064
  • [12] Lü X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F and Huang S 2010 Improved‐performance dye‐sensitized solar cells using Nb‐doped TiO2 electrodes: efficient electron injection and transfer Adv. Funct. Mater. 20 509–15. DOI: 10.1002/adfm.200901292
  • [13] Patra A, Friend C S, Kapoor R and Prasad P N 2003 Fluorescence upconversion properties of Er3+-doped TiO2 and BaTiO3 nanocrystallites Chem. Mater. 15 3650–5. DOI: 10.1021/cm020897u
  • [14] Wang J, Polleux J, Lim J and Dunn B 2007 Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles J. Phys. Chem. C 111 14925–31. DOI: 10.1021/jp074464w
  • [15] Wang Y and Herron N 1991 Nanometer-sized semiconductor clusters: materials synthesis, quantum size effects, and photophysical properties J. Phys. Chem. 95 525–32.
  • [16] Souza A S, Nunes L A, Felinto M, Brito H F and Malta O L 2015 On the quenching of trivalent terbium luminescence by ligand low lying triplet state energy and the role of the 7F5 level: The [Tb (tta) 3 (H2O) 2] case J. Lumin. 167 167–71. DOI: 10.1016/j.jlumin.2015.06.020
  • [17] Ðorđević V, Milićević B and Dramićanin M D 2017 Rare Earth‐Doped Anatase TiO2 Nanoparticles Titanium Dioxide (InTech). DOI: 10.5772/intechopen.68882
  • [18] Zheng C, Teng C P, Yang D-P, Lin M, Win K Y, Li Z and Ye E 2017 Fabrication of luminescent TiO2: Eu3+ and ZrO2: Tb3+ encapsulated PLGA microparticles for bioimaging application with enhanced biocompatibility Mater. Sci. Eng. C. DOI: 10.1016/j.msec.2017.10.005
There are 18 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

İdil Aritman 0000-0002-5941-6276

Publication Date May 15, 2020
Published in Issue Year 2020 Volume: 22 Issue: 65

Cite

APA Aritman, İ. (2020). Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(65), 325-330. https://doi.org/10.21205/deufmd.2020226502
AMA Aritman İ. Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials. DEUFMD. May 2020;22(65):325-330. doi:10.21205/deufmd.2020226502
Chicago Aritman, İdil. “Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, no. 65 (May 2020): 325-30. https://doi.org/10.21205/deufmd.2020226502.
EndNote Aritman İ (May 1, 2020) Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 65 325–330.
IEEE İ. Aritman, “Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials”, DEUFMD, vol. 22, no. 65, pp. 325–330, 2020, doi: 10.21205/deufmd.2020226502.
ISNAD Aritman, İdil. “Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/65 (May 2020), 325-330. https://doi.org/10.21205/deufmd.2020226502.
JAMA Aritman İ. Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials. DEUFMD. 2020;22:325–330.
MLA Aritman, İdil. “Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 22, no. 65, 2020, pp. 325-30, doi:10.21205/deufmd.2020226502.
Vancouver Aritman İ. Synthesis and Characterization of Tb3+-Activated TiO2 Photoluminescence Nanomaterials. DEUFMD. 2020;22(65):325-30.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.