Research Article
BibTex RIS Cite

Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator

Year 2020, Volume: 22 Issue: 65, 457 - 468, 15.05.2020
https://doi.org/10.21205/deufmd.2020226515

Abstract

In this study, thermal performance of plain finned-tube
evaporators in household refrigerators are investigated numerically and
experimentally. The design parameters affecting on the cooling capacity are
determined as air flowrate, evaporator temperature, tube alignment, number of tubes
and number of fins. In the initial stage, the effects of those parameters on
the cooling capacities are simulated by CoilDesigner software. The number of
experiments that are necessary to obtain correlations is determined by Minitab
software. The experiments are carried out in a no-frost household refrigerator
in the off-mode. At the end of each experiment, air side heat transfer
coefficients are calculated to generate a Nusselt (Nu) correlation as a
function of the mentioned design parameters.  The generated correlation of the cooling
capacity can predict 95% of the experimental results within a confidence range
of 15%.  The correlation of the cooling
capacity is converted to the Nusselt number correlation which is found to be
consistent with available data in literature. The experiments reveal that the
cooling capacity is dominantly affected by the evaporator temperature followed
by air flow rate, tube alignment, number of tubes and the number of fins.



 

References

  • [1] N. Kayansayan, “Heat transfer characterization of flat plain fins and round tube heat exchangers,”Experimental thermal and fluid science, vol. 6, no. 3, pp. 263–272, 1993.
  • [2] H. Karatas, E. Dirik, and T. Derbentli, “An experimental study of air-side heat transfer and friction factor correlations on domestic refrigerator finned-tube evaporator coils,” International Refrigeration and Air Conditioning Conference, 1996.
  • [3] C.-C. Wang and K.-Y. Chi, “Heat transfer and friction characteristics of plain fin-and-tube heat ex- changers, part i: new experimental data,” International Journal of Heat and Mass Transfer, vol. 43, no. 15, pp. 2681–2691, 2000.
  • [4] C.-C. Wang, K.-Y. Chi, and C.-J. Chang, “Heat transfer and friction characteristics of plain fin-and- tube heat exchangers, part ii: Correlation,” International Journal of Heat and mass transfer, vol. 43, no. 15, pp. 2693–2700, 2000.
  • [5] N. Kim, B. Youn, and R. Webb, “Air-side heat transfer and friction correlations for plain fin-and- tube heat exchangers with staggered tube arrangements,” Journal of heat transfer, vol. 121, no. 3, pp. 662–667, 1999.
  • [6] T.-H. Lee, J.-S. Lee, S.-Y. Oh, M. Lee, and K. Lee, “Comparison of air-side heat transfer coefficients of several types of evaporators of household freezer/refrigerators,” International Refrigeration and Air Conditioning Conference, 2002.
  • [7] J. R. Barbosa Jr, C. Melo, C. J. Hermes, and P. J. Waltrich, “A study of the air-side heat transfer and pressure drop characteristics of tube-fin no-frostevaporators,” Applied Energy, vol. 86, no. 9, pp. 1484– 1491, 2009.
  • [8] C. Melo, R. O. Piucco, and P. O. Durate, “In-situ performance evaluation of no-frost evaporators,”International Refrigeration and Air Conditioning Conference, 2006.
  • [9] H.-T. Chen and J.-R. Lai, “Study of heat-transfer characteristics on the fin of two-row plate finned-tube heat exchangers,” International Journal of Heat and Mass Transfer, vol. 55, no. 15-16, pp. 4088–4095, 2012.
  • [10] J. M. Choi, Y. Kim, M. Lee, and Y. Kim, “Air side heat transfer coefficients of discrete plate finned- tube heat exchangers with large fin pitch,” Applied Thermal Engineering, vol. 30, no. 2-3, pp. 174–180, 2010.
  • [11] J. G. Paeng, K. H. Kim, and Y. H. Yoon, “Experimental measurement and numerical computation of the air side convective heat transfer coefficients in a plate fin-tube heat exchanger,” Journal of mechanical science and technology, vol. 23, no. 2, pp. 536–543, 2009.
  • [12] S. Tang and K.-T. Yang, “Thermal performance of a single-row fin-and-tube heat exchanger,” Journal of thermal science, vol. 14, no. 2, pp. 172–180, 2005.
  • [13] “Coildesigner, heat exchanger design software,” Center for Environmental Energy Engineering, 4164, Glenn L. Martin Hall, Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA, 2007.
  • [14] R. K. Shah and D. P. Sekulic, Fundamentals of heat exchanger design. John Wiley & Sons, 2003.
  • [15] T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.

Evsel Bir Buzdolabında Kullanılan Düz Kanatlı Borulu Buharlaştırıcıların Isıl Performanslarının İncelenmesi

Year 2020, Volume: 22 Issue: 65, 457 - 468, 15.05.2020
https://doi.org/10.21205/deufmd.2020226515

Abstract



Bu çalışmada, düz kanatlı
borulu buharlaştırıcıların ev tipi buzdolaplarındaki ısıl performansı sayısal
ve deneysel olarak incelenmiştir. Soğutma kapasitesini etkileyen tasarım
parametreleri, hava debisi, buharlaştırıcı sıcaklığı, boru düzeni, boru sayısı
ve kanat sayısı olarak belirlenmiştir. İlk aşamada, bu parametrelerin soğutma
kapasiteleri üzerindeki etkileri CoilDesigner yazılımı ile modellenmiştir.
Isıl inceleme için gerekli olan deneylerin sayısı Minitab yazılımı tarafından
simülasyon sonuçlarına göre belirlenmiştir. Deneyler ev tipi bir buzdolabında
kapalı soğutma çevrimi olmaksızın yapılmıştır. Her deneyin sonunda hava
tarafı ısı transfer katsayıları, söz konusu tasarım parametrelerinin bir
fonksiyonu olarak ve Nusselt (Nu) korelasyonu oluşturmak için hesaplanır.
Soğutma kapasitesi için oluşturulan korelasyon, deneysel sonuçların % 95'ini
% 15'lik bir güven aralığında tahmin etmektedir ve literatürdeki mevcut
verilerle tutarlı bulunmuştur. Deneyler, soğutma kapasitesinin baskın olarak
buharlaştırıcı sıcaklığından ve ardından hava kütlesel debisinden, boru
düzeninden ve kanat sayısından etkilendiğini ortaya koymuştur.


 


References

  • [1] N. Kayansayan, “Heat transfer characterization of flat plain fins and round tube heat exchangers,”Experimental thermal and fluid science, vol. 6, no. 3, pp. 263–272, 1993.
  • [2] H. Karatas, E. Dirik, and T. Derbentli, “An experimental study of air-side heat transfer and friction factor correlations on domestic refrigerator finned-tube evaporator coils,” International Refrigeration and Air Conditioning Conference, 1996.
  • [3] C.-C. Wang and K.-Y. Chi, “Heat transfer and friction characteristics of plain fin-and-tube heat ex- changers, part i: new experimental data,” International Journal of Heat and Mass Transfer, vol. 43, no. 15, pp. 2681–2691, 2000.
  • [4] C.-C. Wang, K.-Y. Chi, and C.-J. Chang, “Heat transfer and friction characteristics of plain fin-and- tube heat exchangers, part ii: Correlation,” International Journal of Heat and mass transfer, vol. 43, no. 15, pp. 2693–2700, 2000.
  • [5] N. Kim, B. Youn, and R. Webb, “Air-side heat transfer and friction correlations for plain fin-and- tube heat exchangers with staggered tube arrangements,” Journal of heat transfer, vol. 121, no. 3, pp. 662–667, 1999.
  • [6] T.-H. Lee, J.-S. Lee, S.-Y. Oh, M. Lee, and K. Lee, “Comparison of air-side heat transfer coefficients of several types of evaporators of household freezer/refrigerators,” International Refrigeration and Air Conditioning Conference, 2002.
  • [7] J. R. Barbosa Jr, C. Melo, C. J. Hermes, and P. J. Waltrich, “A study of the air-side heat transfer and pressure drop characteristics of tube-fin no-frostevaporators,” Applied Energy, vol. 86, no. 9, pp. 1484– 1491, 2009.
  • [8] C. Melo, R. O. Piucco, and P. O. Durate, “In-situ performance evaluation of no-frost evaporators,”International Refrigeration and Air Conditioning Conference, 2006.
  • [9] H.-T. Chen and J.-R. Lai, “Study of heat-transfer characteristics on the fin of two-row plate finned-tube heat exchangers,” International Journal of Heat and Mass Transfer, vol. 55, no. 15-16, pp. 4088–4095, 2012.
  • [10] J. M. Choi, Y. Kim, M. Lee, and Y. Kim, “Air side heat transfer coefficients of discrete plate finned- tube heat exchangers with large fin pitch,” Applied Thermal Engineering, vol. 30, no. 2-3, pp. 174–180, 2010.
  • [11] J. G. Paeng, K. H. Kim, and Y. H. Yoon, “Experimental measurement and numerical computation of the air side convective heat transfer coefficients in a plate fin-tube heat exchanger,” Journal of mechanical science and technology, vol. 23, no. 2, pp. 536–543, 2009.
  • [12] S. Tang and K.-T. Yang, “Thermal performance of a single-row fin-and-tube heat exchanger,” Journal of thermal science, vol. 14, no. 2, pp. 172–180, 2005.
  • [13] “Coildesigner, heat exchanger design software,” Center for Environmental Energy Engineering, 4164, Glenn L. Martin Hall, Mechanical Engineering Department, University of Maryland, College Park, MD 20742, USA, 2007.
  • [14] R. K. Shah and D. P. Sekulic, Fundamentals of heat exchanger design. John Wiley & Sons, 2003.
  • [15] T. L. Bergman, F. P. Incropera, D. P. DeWitt, and A. S. Lavine, Fundamentals of heat and mass transfer. John Wiley & Sons, 2011.
There are 15 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Omer Alp Atici 0000-0002-9494-8032

Sertaç Çadırcı This is me

Tolga Apaydın This is me

Publication Date May 15, 2020
Published in Issue Year 2020 Volume: 22 Issue: 65

Cite

APA Atici, O. A., Çadırcı, S., & Apaydın, T. (2020). Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 22(65), 457-468. https://doi.org/10.21205/deufmd.2020226515
AMA Atici OA, Çadırcı S, Apaydın T. Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator. DEUFMD. May 2020;22(65):457-468. doi:10.21205/deufmd.2020226515
Chicago Atici, Omer Alp, Sertaç Çadırcı, and Tolga Apaydın. “Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 22, no. 65 (May 2020): 457-68. https://doi.org/10.21205/deufmd.2020226515.
EndNote Atici OA, Çadırcı S, Apaydın T (May 1, 2020) Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22 65 457–468.
IEEE O. A. Atici, S. Çadırcı, and T. Apaydın, “Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator”, DEUFMD, vol. 22, no. 65, pp. 457–468, 2020, doi: 10.21205/deufmd.2020226515.
ISNAD Atici, Omer Alp et al. “Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 22/65 (May 2020), 457-468. https://doi.org/10.21205/deufmd.2020226515.
JAMA Atici OA, Çadırcı S, Apaydın T. Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator. DEUFMD. 2020;22:457–468.
MLA Atici, Omer Alp et al. “Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 22, no. 65, 2020, pp. 457-68, doi:10.21205/deufmd.2020226515.
Vancouver Atici OA, Çadırcı S, Apaydın T. Thermal Performance Investigation of Plain Finned-Tube Evaporators Used in Household Refrigerator. DEUFMD. 2020;22(65):457-68.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.