Bir Karbon Tutulum Depolama Teknolojisi-Oksiyanma’nın Akışkan Yataklı Sistemde Deneysel Olarak İncelenmesi
Year 2020,
Volume: 22 Issue: 66, 715 - 723, 22.09.2020
Ufuk Kayahan
Abstract
Artan dünya nüfüsu enerji taleplerinde de artış eğiliminin sürmesine neden olmaktadır. Önümüzdeki birkaç on yıl içerisinde fosil yakıtların enerji talebini karşılamada kullanılmaya devam edeceği ön görülmektedir. Fosil yakıt kullanımından kaynaklanan atmosferik CO2 konsantrasyonundaki artışı kontrol altında tutabilmek için farklı teknolojiler önerilmektedir. Oksi-Yanma bu teknolojiler arasında önemli bir yer tutmaktadır. Bu çalışmada seçilen bir Türk Linyiti (Tunçbilek) 30kWth kapasiteli dolaşımlı akışkan yataklı bir yakıcıda oksi yanma ve hava ile yanma koşullarında yakılmıştır. Yapılan testler sonucunda oksi yanma koşullarında kuru bazda %88 oranında CO2 içeren bir baca gazı elde edilmiştir. Ayrıca oksi yanma koşullarında hava ile yanma koşullarına göre daha düşük NOx emisyonu ortaya çıktığı görülmüştür.
Supporting Institution
TÜBİTAK Marmara Araştırma Merkezi Enerji Enstitüsü
Thanks
TÜBİTAK Marmara Araştırma Merkezi Enerji Enstitüsü
References
- [1] Birleşmiş Milletler 2019. World Population Progress, https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (Erişim Tarihi: 09.01.2020).
- [2] IEA (2019), "World Energy Outlook 2019", IEA, Paris https://www.iea.org/reports/world-energy-outlook-2019. (Erişim Tarihi: 09.01.2020)
- [3] IEA (2017), "World Energy Outlook 2017", IEA, Paris https://www.iea.org/reports/world-energy-outlook-2017. (Erişim Tarihi: 09.01.2020)
- [4] Elias, R.S., Wahab, M.I.M., Fang, L., 2018. Retrofitting carbon capture and storage to natural gas-fired power plants: A real-options approach. Journal of Cleaner Production, Cilt 192, s. 722–734. DOI:10.1016/j.jclepro.2018.05.019
- [5] Zhang, J., Zhou, Z., Ma, L., Li, Z., & Ni, W., 2013. Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal-water slurry preheating vaporization technology. Energy, Cilt 51, s. 137–145. DOI:10.1016/j.energy.2012.12.024
- [6] Laugwitz, A., Gräbner, M., Meyer, B., 2011. Availability analysis of integrated gasification combined cycle (IGCC) power plants, in: Power Plant Life Management and Performance Improvement. S. 110–142. DOI:10.1533/9780857093806.1.110
- [7] Leung, D.Y.C., Caramanna, G., Maroto-Valer, M.M., 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, Cilt 39, s. 426-443. DOI:10.1016/j.rser.2014.07.093
- [8] Kárászová, M., Zach, B., Petrusová, Z., Červenka, V., Bobák, M., Šyc, M., and Izák, P., 2019. Post-combustion carbon capture by membrane separation, Review. Separation and Purification Technology. DOI:10.1016/j.seppur.2019.116448
- [9] Dave, N., Do, T., Palfreyman, D., & Feron, P. H. M. 2011. Impact of post combustion capture of CO2 on existing and new Australian coal-fired power plants. In Energy Procedia, Cilt 4, s. 2005–2019. Elsevier Ltd. DOI: 10.1016/j.egypro.2011.02.082
- [10] Kim, S., Ahn, H., Choi, S., & Kim, T. 2012. Impurity effects on the oxy-coal combustion power generation system. International Journal of Greenhouse Gas Control, Cilt11, s. 262–270. DOI: 10.1016/j.ijggc.2012.09.002
- [11] Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P., & Wall, T. F. 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science. Cilt 31, s. 283-307 DOI: 10.1016/j.pecs.2005.07.001
- [12] Liu, H., Okazaki, K., 2003. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation. Fuel, Cilt 82, s. 1427–1436. DOI:10.1016/S0016-2361(03)00067-X
- [13] Burdyny, T., Struchtrup, H., 2010. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy. Cilt 35, s. 1884-1897. DOI: 10.1016/j.energy.2009.12.033
A Carbon Capture and Storage Technology- Oxycombustion, Experimental investigation in a Fluidized Bed System
Year 2020,
Volume: 22 Issue: 66, 715 - 723, 22.09.2020
Ufuk Kayahan
Abstract
Energy demand is expected to increase because of increasing world population. Fossil fuel will still play important role to meet this demand in next decades. It is upmost important to keep atmospheric CO2 concantration rise caused by fossil fuel usage under control. Oxy combustion is seen as a promising technology to control atmospheric CO2 concentration. In this study a selected Turkish Lignite (Tunçbilek) was combusted in a 30kWth circulating fluidized bed combustion system under both air and oxy combustion conditions. 88% CO2 concentration was observed in flue gas at dry basis during Oxy combustion. Results also indicate that NOx emissions in oxy combustion are lower than that in air combustion.
References
- [1] Birleşmiş Milletler 2019. World Population Progress, https://www.un.org/development/desa/en/news/population/world-population-prospects-2019.html (Erişim Tarihi: 09.01.2020).
- [2] IEA (2019), "World Energy Outlook 2019", IEA, Paris https://www.iea.org/reports/world-energy-outlook-2019. (Erişim Tarihi: 09.01.2020)
- [3] IEA (2017), "World Energy Outlook 2017", IEA, Paris https://www.iea.org/reports/world-energy-outlook-2017. (Erişim Tarihi: 09.01.2020)
- [4] Elias, R.S., Wahab, M.I.M., Fang, L., 2018. Retrofitting carbon capture and storage to natural gas-fired power plants: A real-options approach. Journal of Cleaner Production, Cilt 192, s. 722–734. DOI:10.1016/j.jclepro.2018.05.019
- [5] Zhang, J., Zhou, Z., Ma, L., Li, Z., & Ni, W., 2013. Efficiency of wet feed IGCC (integrated gasification combined cycle) systems with coal-water slurry preheating vaporization technology. Energy, Cilt 51, s. 137–145. DOI:10.1016/j.energy.2012.12.024
- [6] Laugwitz, A., Gräbner, M., Meyer, B., 2011. Availability analysis of integrated gasification combined cycle (IGCC) power plants, in: Power Plant Life Management and Performance Improvement. S. 110–142. DOI:10.1533/9780857093806.1.110
- [7] Leung, D.Y.C., Caramanna, G., Maroto-Valer, M.M., 2014. An overview of current status of carbon dioxide capture and storage technologies. Renewable and Sustainable Energy Reviews, Cilt 39, s. 426-443. DOI:10.1016/j.rser.2014.07.093
- [8] Kárászová, M., Zach, B., Petrusová, Z., Červenka, V., Bobák, M., Šyc, M., and Izák, P., 2019. Post-combustion carbon capture by membrane separation, Review. Separation and Purification Technology. DOI:10.1016/j.seppur.2019.116448
- [9] Dave, N., Do, T., Palfreyman, D., & Feron, P. H. M. 2011. Impact of post combustion capture of CO2 on existing and new Australian coal-fired power plants. In Energy Procedia, Cilt 4, s. 2005–2019. Elsevier Ltd. DOI: 10.1016/j.egypro.2011.02.082
- [10] Kim, S., Ahn, H., Choi, S., & Kim, T. 2012. Impurity effects on the oxy-coal combustion power generation system. International Journal of Greenhouse Gas Control, Cilt11, s. 262–270. DOI: 10.1016/j.ijggc.2012.09.002
- [11] Buhre, B. J. P., Elliott, L. K., Sheng, C. D., Gupta, R. P., & Wall, T. F. 2005. Oxy-fuel combustion technology for coal-fired power generation. Progress in Energy and Combustion Science. Cilt 31, s. 283-307 DOI: 10.1016/j.pecs.2005.07.001
- [12] Liu, H., Okazaki, K., 2003. Simultaneous easy CO2 recovery and drastic reduction of SOx and NOx in O2/CO2 coal combustion with heat recirculation. Fuel, Cilt 82, s. 1427–1436. DOI:10.1016/S0016-2361(03)00067-X
- [13] Burdyny, T., Struchtrup, H., 2010. Hybrid membrane/cryogenic separation of oxygen from air for use in the oxy-fuel process. Energy. Cilt 35, s. 1884-1897. DOI: 10.1016/j.energy.2009.12.033