Electrodeposition of copper (II) sulfide and zinc sulfide onto polycrystalline gold electrode
Year 2020,
Volume: 22 Issue: 66, 769 - 779, 22.09.2020
Özge Sürücü
,
Serdar Abacı
Abstract
An electrodeposition-based process was developed in this work. Electrochemical atomic layer epitaxy (ECALE) and co-deposition methodologies were employed to grow copper (II) sulfide (CuS) and zinc sulfide (ZnS) thin films as photovoltaic semiconductors on polycrystalline gold electrode. The deposition potentials of copper (Cu), zinc (Zn) and sulfur (S) were defined separately by cyclic voltammetry. Thin films were created from an electrolyte containing copper (II) sulfate (CuSO4), sodium sulfur (Na2S) and zinc sulfate (ZnSO4) in ethylenediaminetetraacetic acid (EDTA) using both cyclic voltammetry and bulk electrolysis techniques. The influence of bath temperature at the deposition potential was studied to determine the crystallinity of deposits. From the chronoamperometry results including the transients obtained within the under potential region, the nucleation and growth process of deposits were estimated. In this way, an electrodeposition-based method for CuS and ZnS semiconductors in a comparable basis was improved on polycrystalline gold substrate.
References
- [1] Oviedo, O.A., Reinaudi, L., Garcia, S.G., Leiva, E.P.M. 2016. Underpotential deposition: from fundamentals and theory to applications at the nanoscale. Scholz F., ed. Springer International Publishing, Switzerland. DOI: 10.1007/s10008-016-3222-7.
- [2] Mascaro, L.H., Santos, M.C., Machado, S.A.S., Avaca, L.A. 2002. Voltammetric and Rotating Ring-Disk Studies of the Influence of Anions in the Underpotential Deposition of Zinc on Platinum. Journal of the Brazilian Chemical Society, Vol. 13, p. 529-534. DOI: 10.1590/S0103-50532002000400019.
- [3] Gregory, B.W., Stickney, J.L. 1991. Electrochemical atomic layer epitaxy (ECALE). Journal of Electroanalytical Chemistry, Vol. 300, p. 543-561. DOI: 10.1016/0022-0728(91)85415-L.
- [4] Liang, X., Jayaraju, N., Thambidurai, C., Zhang, Q., Stickney, J.L. 2011. Controlled elec-trochemical formation of GexSbyTez using atomic layer deposition (ALD). Chemistry of Materials, Vol. 23, p. 1742-1752. DOI: 10.1021/cm102672j.
- [5] Öznülüer, T., Erdoğan, İ.Y., Şişman, İ., Demir, Ü. 2005. Electrochemical atom-by-atom growth of PbS by modified ECALE method. Chemistry of Materials, Vol. 17, p. 935-937. DOI: 10.1021/cm048246g.
- [6] Zhu, W., Liu, X., Liu, H., Tong, D., Yang, J., Peng, J. 2010. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. Journal of the American Chemical Society, Vol. 132, p. 12619-12626. DOI: 10.1021/ja1025112.
- [7] Noyhouzer, T., Mandler, D. 2011. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode. Analytica Chimica Acta, Vol. 684, p. 1-7. DOI: 10.1016/j.aca.2010.10.021.
- [8] Aramataa, A., Taguchi, S., Fukudaa, T., Nakamuraa, M., Horanyi, G. 1998. Underpotential deposition of zinc ions at single crystal electrodes and the effect of the adsorbed anions. Electrochimica Acta, Vol. 44, p. 999-1007. DOI: 10.1016/S0013-4686(98)00204-7.
- [9] Giaccherini, A., Cinotti, S., Guerri, A., Carla, F., Montegrossi, G., Vizza, F., Lavacchi, A., Felici, R., Di Benedetto, F., Innocenti, M. 2017. Operando SXRD study of the structure and growth process of Cu 2 S ultra-thin films. Scientific Reports, Vol. 7, p. 1615. DOI: 10.1038/s41598-017-01717-0.
- [10] Bozzini, B., Baker, M.A., Cavallotti, P.L., Cerri, E., Lenardi, C. 2000. Electrodeposition of ZnTe for Photovoltaic Cells. Thin Solid Films, Vol. 361, p. 388-395. DOI: 10.1016/S0040-6090(99)00808-1.
- [11] Pauporte, T., Lincot, D. 2000. Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochimica Acta, Vol. 45, p. 3345-3353. DOI: 10.1016/S0013-4686(00)00405-9.
- [12] Heo, P., Ichino, R., Okido, M. 2006. ZnTe electrodeposition from organic solvents. Electrochimica Acta, Vol. 51, p. 6325-6330. DOI: 10.1016/j.electacta.2006.04.016.
- [13] Dogel, J., Freyland, W. 2003. Layer-by-layer growth of zinc during electrodeposition on Au(111) from a room temperature molten salt. Physical Chemistry Chemical Physics, Vol. 5, p. 2484-2487. DOI: 10.1039/B303388K.
- [14] Alanyalıoğlu, M., Çakal, H., Öztürk, A.E., Demir, Ü. 2001. Electrochemical studies of the effects of pH and the surface structure of gold substrates on the underpotential deposition of sulfur. The Journal of Physical Chemistry B, Vol. 105, p. 10588-10593. DOI: 10.1021/jp004227s.
- [15] Mahalingam, T., John, V.S., Rajendran, S., Ravi, G., Sebastian, P.J. 2002. Annealing studies of electrodeposited zinc telluride thin films. Surface and Coatings Technology, Vol. 155, p. 245-249. DOI: 10.1016/S0257-8972(02)00117-2.
- [16] Short, A., Jewell, L., Bielecki, A., Keiber, T., Bridges, F., Carter, S., Alers, G. 2014. Structure in multilayer films of zinc sulfide and copper sulfide via atomic layer deposition. Journal of Vacuum Science & Technology A, Vol. 32, p. 01A125. DOI: 10.1116/1.4847956.
- [17] Sudha, V., Sangaranarayanan, M.V. 2005. Underpotential deposition of metals – Progress and prospects in modelling. Journal of Chemical Sciences, Vol. 117, p. 207-218. DOI: 10.1007/BF02709289.
- [18] Chiu, Y.D., Dow, W.P., Liu, Y.F., Lee, Y.L., Yau, S.L., Huang, S.M. 2011. Copper Underpotential Deposition on Gold in the Presence of Polyethylene Glycol and Chloride. International Journal of Electrochemical Sciences, Vol. 6, p. 3416-3426.
- [19] Taguchi, S., Kondo, M., Mori, H., Aramata, A. 2013. Formation of zinc–oxianion complex adlayer by underpotential deposition of Zn on Au(1 1 1) electrode: Preferential formation of zinc monohydrogen phosphate complex in weakly acidic solutions. Electrochimica Acta, Vol. 111, p. 642-655. DOI: 10.1016/j.electacta.2013.07.217.
- [20] Biçer, M., Aydın, A.O., Şişman, İ. 2010. Electrochemical synthesis of CdS nanowires by underpotential deposition in anodic alumina membrane templates. Electrochimica Acta, Vol. 55, p. 3749-3755. DOI: 10.1016/j.electacta.2010.02.015.
- [21] Innocenti, M., Cinotti, S., Bencista, I., Carretti, E., Becucci, L., Di Benedetto, F., Lavacchi, A., Foresti, M.L. 2014. Electrochemical Growth of Cu-Zn Sulfides of Various Stoichiometries. Journal of The Electrochemical Society, Vol. 161, p. D14-D17. DOI: 10.1149/2.021401jes.
- [22] Rusi, M.S.R. 2016. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors. Plos One, Vol. 11, p. e0154566. DOI: 10.1371/journal.pone.0154566.
- [23] Palomar Pardave, M., Aldane Gonzalez, J., Botello, L.E., Arce Estrada, E.M., Ramirez Silva, M.T., Mostany, J., Romero Romo, M. 2017. Influence of Temperature on the Thermodynamics and Kinetics of Cobalt Electrochemical Nucleation and Growth. Electrochimica Acta, Vol. 241, p. 162-169. DOI: 10.1016/j.electacta.2017.04.126.
- [24] Cheng, S., Chen, G., Chen, Y., Huang, C. 2006. Effect of deposition potential and bath temperature on the electrodeposition of SnS film. Optical Materials, Vol. 29, p. 439-444. DOI: 10.1016/j.optmat.2005.10.018.
- [25] Tylka, M.M., Willit, J.L., Williamson, M.A. 2017. Electrochemical Nucleation and Growth of Uranium and Plutonium from Molten Salts. Journal of The Electrochemical Society, Vol. 164, p. H5327-H5335. DOI: 10.1149/2.0471708jes.
- [26] Garfias-Garcia, E., Palamor-Pardave, M., Romero-Romo, M., Ramirez-Silva, M.T., Batina, N. 2007. Kinetic Mechanism of Copper UPD Nucleation and Growth on Mono and Polycrystalline Gold. ECS Transactions, Vol. 3, p. 35-43. DOI: 10.1149/1.2795610.
- [27] Cottrell, F.G. 1902. Der reststrom bei galvanischer polarisation, betrachtet als ein diffusionsproblem. Zeitschrift für Physikalische Chemie, Vol. 42, p. 385-431. DOI: 10.1515/zpch-1903-4229.
- [28] Dogel, J. 2004. Electrochemical SPM Study of 2D and 3D Phase Formation of Zn at the Ionic Liquid /Au(111) Interface. Universitätsverlag Karlsruhe, Karlsruhe.
Electrodeposition of copper (II) sulfide and zinc sulfide onto polycrystalline gold electrode
Year 2020,
Volume: 22 Issue: 66, 769 - 779, 22.09.2020
Özge Sürücü
,
Serdar Abacı
Abstract
An electrodeposition-based process was developed in this work. Electrochemical atomic layer epitaxy (ECALE) and co-deposition methodologies were employed to grow copper (II) sulfide (CuS) and zinc sulfide (ZnS) thin films as photovoltaic semiconductors on polycrystalline gold electrode. The deposition potentials of copper (Cu), zinc (Zn) and sulfur (S) were defined separately by cyclic voltammetry. Thin films were created from an electrolyte containing copper (II) sulfate (CuSO4), sodium sulfur (Na2S) and zinc sulfate (ZnSO4) in ethylenediaminetetraacetic acid (EDTA) using both cyclic voltammetry and bulk electrolysis techniques. The influence of bath temperature at the deposition potential was studied to determine the crystallinity of deposits. From the chronoamperometry results including the transients obtained within the under potential region, the nucleation and growth process of deposits were estimated. In this way, an electrodeposition-based method for CuS and ZnS semiconductors in a comparable basis was improved on polycrystalline gold substrate.
References
- [1] Oviedo, O.A., Reinaudi, L., Garcia, S.G., Leiva, E.P.M. 2016. Underpotential deposition: from fundamentals and theory to applications at the nanoscale. Scholz F., ed. Springer International Publishing, Switzerland. DOI: 10.1007/s10008-016-3222-7.
- [2] Mascaro, L.H., Santos, M.C., Machado, S.A.S., Avaca, L.A. 2002. Voltammetric and Rotating Ring-Disk Studies of the Influence of Anions in the Underpotential Deposition of Zinc on Platinum. Journal of the Brazilian Chemical Society, Vol. 13, p. 529-534. DOI: 10.1590/S0103-50532002000400019.
- [3] Gregory, B.W., Stickney, J.L. 1991. Electrochemical atomic layer epitaxy (ECALE). Journal of Electroanalytical Chemistry, Vol. 300, p. 543-561. DOI: 10.1016/0022-0728(91)85415-L.
- [4] Liang, X., Jayaraju, N., Thambidurai, C., Zhang, Q., Stickney, J.L. 2011. Controlled elec-trochemical formation of GexSbyTez using atomic layer deposition (ALD). Chemistry of Materials, Vol. 23, p. 1742-1752. DOI: 10.1021/cm102672j.
- [5] Öznülüer, T., Erdoğan, İ.Y., Şişman, İ., Demir, Ü. 2005. Electrochemical atom-by-atom growth of PbS by modified ECALE method. Chemistry of Materials, Vol. 17, p. 935-937. DOI: 10.1021/cm048246g.
- [6] Zhu, W., Liu, X., Liu, H., Tong, D., Yang, J., Peng, J. 2010. Coaxial heterogeneous structure of TiO2 nanotube arrays with CdS as a superthin coating synthesized via modified electrochemical atomic layer deposition. Journal of the American Chemical Society, Vol. 132, p. 12619-12626. DOI: 10.1021/ja1025112.
- [7] Noyhouzer, T., Mandler, D. 2011. Determination of low levels of cadmium ions by the under potential deposition on a self-assembled monolayer on gold electrode. Analytica Chimica Acta, Vol. 684, p. 1-7. DOI: 10.1016/j.aca.2010.10.021.
- [8] Aramataa, A., Taguchi, S., Fukudaa, T., Nakamuraa, M., Horanyi, G. 1998. Underpotential deposition of zinc ions at single crystal electrodes and the effect of the adsorbed anions. Electrochimica Acta, Vol. 44, p. 999-1007. DOI: 10.1016/S0013-4686(98)00204-7.
- [9] Giaccherini, A., Cinotti, S., Guerri, A., Carla, F., Montegrossi, G., Vizza, F., Lavacchi, A., Felici, R., Di Benedetto, F., Innocenti, M. 2017. Operando SXRD study of the structure and growth process of Cu 2 S ultra-thin films. Scientific Reports, Vol. 7, p. 1615. DOI: 10.1038/s41598-017-01717-0.
- [10] Bozzini, B., Baker, M.A., Cavallotti, P.L., Cerri, E., Lenardi, C. 2000. Electrodeposition of ZnTe for Photovoltaic Cells. Thin Solid Films, Vol. 361, p. 388-395. DOI: 10.1016/S0040-6090(99)00808-1.
- [11] Pauporte, T., Lincot, D. 2000. Electrodeposition of semiconductors for optoelectronic devices: results on zinc oxide. Electrochimica Acta, Vol. 45, p. 3345-3353. DOI: 10.1016/S0013-4686(00)00405-9.
- [12] Heo, P., Ichino, R., Okido, M. 2006. ZnTe electrodeposition from organic solvents. Electrochimica Acta, Vol. 51, p. 6325-6330. DOI: 10.1016/j.electacta.2006.04.016.
- [13] Dogel, J., Freyland, W. 2003. Layer-by-layer growth of zinc during electrodeposition on Au(111) from a room temperature molten salt. Physical Chemistry Chemical Physics, Vol. 5, p. 2484-2487. DOI: 10.1039/B303388K.
- [14] Alanyalıoğlu, M., Çakal, H., Öztürk, A.E., Demir, Ü. 2001. Electrochemical studies of the effects of pH and the surface structure of gold substrates on the underpotential deposition of sulfur. The Journal of Physical Chemistry B, Vol. 105, p. 10588-10593. DOI: 10.1021/jp004227s.
- [15] Mahalingam, T., John, V.S., Rajendran, S., Ravi, G., Sebastian, P.J. 2002. Annealing studies of electrodeposited zinc telluride thin films. Surface and Coatings Technology, Vol. 155, p. 245-249. DOI: 10.1016/S0257-8972(02)00117-2.
- [16] Short, A., Jewell, L., Bielecki, A., Keiber, T., Bridges, F., Carter, S., Alers, G. 2014. Structure in multilayer films of zinc sulfide and copper sulfide via atomic layer deposition. Journal of Vacuum Science & Technology A, Vol. 32, p. 01A125. DOI: 10.1116/1.4847956.
- [17] Sudha, V., Sangaranarayanan, M.V. 2005. Underpotential deposition of metals – Progress and prospects in modelling. Journal of Chemical Sciences, Vol. 117, p. 207-218. DOI: 10.1007/BF02709289.
- [18] Chiu, Y.D., Dow, W.P., Liu, Y.F., Lee, Y.L., Yau, S.L., Huang, S.M. 2011. Copper Underpotential Deposition on Gold in the Presence of Polyethylene Glycol and Chloride. International Journal of Electrochemical Sciences, Vol. 6, p. 3416-3426.
- [19] Taguchi, S., Kondo, M., Mori, H., Aramata, A. 2013. Formation of zinc–oxianion complex adlayer by underpotential deposition of Zn on Au(1 1 1) electrode: Preferential formation of zinc monohydrogen phosphate complex in weakly acidic solutions. Electrochimica Acta, Vol. 111, p. 642-655. DOI: 10.1016/j.electacta.2013.07.217.
- [20] Biçer, M., Aydın, A.O., Şişman, İ. 2010. Electrochemical synthesis of CdS nanowires by underpotential deposition in anodic alumina membrane templates. Electrochimica Acta, Vol. 55, p. 3749-3755. DOI: 10.1016/j.electacta.2010.02.015.
- [21] Innocenti, M., Cinotti, S., Bencista, I., Carretti, E., Becucci, L., Di Benedetto, F., Lavacchi, A., Foresti, M.L. 2014. Electrochemical Growth of Cu-Zn Sulfides of Various Stoichiometries. Journal of The Electrochemical Society, Vol. 161, p. D14-D17. DOI: 10.1149/2.021401jes.
- [22] Rusi, M.S.R. 2016. Effects of Electrodeposition Mode and Deposition Cycle on the Electrochemical Performance of MnO2-NiO Composite Electrodes for High-Energy-Density Supercapacitors. Plos One, Vol. 11, p. e0154566. DOI: 10.1371/journal.pone.0154566.
- [23] Palomar Pardave, M., Aldane Gonzalez, J., Botello, L.E., Arce Estrada, E.M., Ramirez Silva, M.T., Mostany, J., Romero Romo, M. 2017. Influence of Temperature on the Thermodynamics and Kinetics of Cobalt Electrochemical Nucleation and Growth. Electrochimica Acta, Vol. 241, p. 162-169. DOI: 10.1016/j.electacta.2017.04.126.
- [24] Cheng, S., Chen, G., Chen, Y., Huang, C. 2006. Effect of deposition potential and bath temperature on the electrodeposition of SnS film. Optical Materials, Vol. 29, p. 439-444. DOI: 10.1016/j.optmat.2005.10.018.
- [25] Tylka, M.M., Willit, J.L., Williamson, M.A. 2017. Electrochemical Nucleation and Growth of Uranium and Plutonium from Molten Salts. Journal of The Electrochemical Society, Vol. 164, p. H5327-H5335. DOI: 10.1149/2.0471708jes.
- [26] Garfias-Garcia, E., Palamor-Pardave, M., Romero-Romo, M., Ramirez-Silva, M.T., Batina, N. 2007. Kinetic Mechanism of Copper UPD Nucleation and Growth on Mono and Polycrystalline Gold. ECS Transactions, Vol. 3, p. 35-43. DOI: 10.1149/1.2795610.
- [27] Cottrell, F.G. 1902. Der reststrom bei galvanischer polarisation, betrachtet als ein diffusionsproblem. Zeitschrift für Physikalische Chemie, Vol. 42, p. 385-431. DOI: 10.1515/zpch-1903-4229.
- [28] Dogel, J. 2004. Electrochemical SPM Study of 2D and 3D Phase Formation of Zn at the Ionic Liquid /Au(111) Interface. Universitätsverlag Karlsruhe, Karlsruhe.