Research Article
BibTex RIS Cite

Çan Kömürü Gazlaştırılmasının Sürüklemeli Akış Gazlaştırıcıda Aspen PLUS® Kullanılarak İncelenmesi

Year 2021, Volume: 23 Issue: 67, 309 - 318, 15.01.2021
https://doi.org/10.21205/deufmd.2021236727

Abstract

Enerji talebi nedeniyle aşırı fosil yakıt tüketimi, çevreye yayılan CO2 miktarında artışa neden olmaktadır. Gazlaştırma teknolojisi, CO2 emisyonuna neden olan kömür gibi fosil yakıtların temiz ve verimli kullanılmasını sağlar. Hava, buhar ve O2/CO2 karışımı gazlaştırma atmosferi olarak kullanılabilir. İnert gazların azaltılması (N2) ve sentez gazında yüksek sıcaklıklarda CO konsantrasyonunun artması yüksek kaliteli gaz elde edilmesine olanak tanır. Ticari gazlaştırıcılar arasında, sürüklemeli gazlaştırıcılarının katransız sentez gazı elde etme, yüksek karbon dönüşüm verimliliği ve yüksek kapasitelerde üretim gibi birçok avantajı bulunmaktadır. Ayrıca, sürüklemeli gazlaştırıcılarda kullanılacak kömür çeşidine bağlı olarak herhangi bir sınırlama yoktur. Sürüklemeli gazlaştırıcılarının performansı genellikle simülasyon programları ile incelenirken, düşük maliyetlerle tasarım ve optimizasyon yapılabilmektedir. Bu çalışmanın amacı Aspen Plus termodinamik simülasyon programını kullanarak Türk Linyitleri (Çan kömürü) için yeni bir sürüklemeli akış gazlaştırıcı modeli geliştirmektir ve gazlaştırıcıya ait çalışma parametrelerinin sentez gazı üzerindeki etkilerini parametrik çalışma yaparak incelemektir.

References

  • Asif, M. and T. Muneer. S. 2007. Energy supply, its demand and security issues for developed and emerging economies, Renewable and sustainable energy reviews, Cilt. 11, s. 1388-1413.
  • Higman, C., 2008. Gasification, in Combustion engineering issues for solid fuel systems. 2008, Elsevier. 423-468s.
  • Kern, S., C. Pfeifer, and H. Hofbauer. S. 2013. Gasification of lignite in a dual fluidized bed gasifier—Influence of bed material particle size and the amount of steam, Fuel processing technology, Cilt. 111, s. 1-13.
  • Song, Y., J. Feng. S. 2013. Impact of biomass on energy and element utilization efficiency during co-gasification with coal, Fuel processing technology, Cilt. 115, s. 42-49.
  • Emun, F., M. Gadalla. S. 2010. Integrated gasification combined cycle (IGCC) process simulation and optimization, Computers & chemical engineering, Cilt. 34, s. 331-338.
  • Asif, M., C.-u. Bak. S. 2015. Performance evaluation of integrated gasification combined cycle (IGCC) utilizing a blended solution of ammonia and 2-amino-2-methyl-1-propanol (AMP) for CO2 capture, Fuel, Cilt. 160, s. 513-524.
  • Xu, M., R. Yan. S. 2004. Status of trace element emission in a coal combustion process: a review, Fuel Processing Technology, Cilt. 85, s. 215-237.
  • Speight, J., S. 2008. Synthetic fuels handbook: properties, process and performance, Cilt.
  • Giuffrida, A., M.C. Romano, and G. Lozza. S. 2011. Thermodynamic analysis of air-blown gasification for IGCC applications, Applied energy, Cilt. 88, s. 3949-3958.
  • Leijenhorst, E.J., D. Assink. S. 2015. Entrained flow gasification of straw-and wood-derived pyrolysis oil in a pressurized oxygen blown gasifier, Biomass and Bioenergy, Cilt. 79, s. 166-176.
  • Higman, C. and S. Tam. S. 2013. Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels, Chemical reviews, Cilt. 114, s. 1673-1708.
  • Higman, C. State of the gasification industry: worldwide gasification database 2014 update. in Gasification Technologies Conference Washington, DC. 2014.
  • Xu, T., S.V. Pisupati, and S. Bhattacharya. S. 2019. Comparison of entrained flow CO2 gasification behaviour of three low-rank coals–Victorian brown coal, Beulah lignite, and Inner Mongolia lignite, Fuel, Cilt. 249, s. 206-218.
  • Qin, S., S. Chang, and Q. Yao. S. 2018. Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers, Applied energy, Cilt. 229, s. 413-432.
  • Govind, R. and J. Shah. S. 1984. Modeling and simulation of an entrained flow coal gasifier, AIChE Journal, Cilt. 30, s. 79-92.
  • Sahoo, B.B., N. Sahoo, and U.K. Saha. S. 2012. Effect of H2: CO ratio in syngas on the performance of a dual fuel diesel engine operation, Applied Thermal Engineering, Cilt. 49, s. 139-146.
  • Xu, S., Y. Ren. S. 2014. Development of a novel 2-stage entrained flow coal dry powder gasifier, Applied energy, Cilt. 113, s. 318-323.
  • Gómez-Barea, A. and B. Leckner. S. 2010. Modeling of biomass gasification in fluidized bed, Progress in Energy and Combustion Science, Cilt. 36, s. 444-509.
  • Couto, N., A. Rouboa. S. 2013. Influence of the biomass gasification processes on the final composition of syngas, Energy Procedia, Cilt. 36, s. 596-606.
  • Couto, N.D., V.B. Silva. S. 2015. Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices, Energy, Cilt. 93, s. 864-873.
  • Puig-Gamero, M., J. Argudo-Santamaria. S. 2018. Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis, Energy conversion and management, Cilt. 177, s. 416-427.
  • Ergudenier, A., 1993. Gasification of wheat straw in a dual-distributor type fluidized bed reactor. 793, Thesis (Ph. D.)--Technical University of Nova Scotia.
  • Sadaka, S.S., A. Ghaly, and M. Sabbah. S. 2002. Two phase biomass air-steam gasification model for fluidized bed reactors: Part I—model development, Biomass and bioenergy, Cilt. 22, s. 439-462.
  • Lv, P., Z. Xiong. S. 2004. An experimental study on biomass air–steam gasification in a fluidized bed, Bioresource technology, Cilt. 95, s. 95-101.
  • Nayır, T., 2012. Kömür Ve Biyokütle Karışımlarının Gazlaştırılması Ve Aspen Hysys® Programı İle Simulasyonu. 794, Fen Bilimleri Enstitüsü.
  • Ünlü, A., U. Kayahan. S. 2017. Pilot scale entrained flow gasification of Turkish lignites, Journal of the Energy Institute, Cilt. 90, s. 159-165.
  • Niu, M., Y. Huang. S. 2013. Simulation of syngas production from municipal solid waste gasification in a bubbling fluidized bed using Aspen Plus, Industrial & Engineering Chemistry Research, Cilt. 52, s. 14768-14775.
  • Guo, F., Y. Dong. S. 2014. Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study, International Journal of Hydrogen Energy, Cilt. 39, s. 5625-5633.
  • Gil, J., J. Corella. S. 1999. Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution, Biomass and bioenergy, Cilt. 17, s. 389-403.
  • Shen, L., Y. Gao, and J. Xiao. S. 2008. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds, Biomass and Bioenergy, Cilt. 32, s. 120-127.
  • Dou, B. and Y. Song. S. 2010. A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor, International Journal of Hydrogen Energy, Cilt. 35, s. 10271-10284.
  • Ku, X., T. Li, and T. Løvås. S. 2014. Eulerian–Lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor, Energy & Fuels, Cilt. 28, s. 5184-5196.
  • Acharya, B., A. Dutta, and P. Basu. S. 2010. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO, International Journal of Hydrogen Energy, Cilt. 35, s. 1582-1589.
  • Han, L., Q. Wang. S. 2011. Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed, International journal of hydrogen energy, Cilt. 36, s. 4820-4829.
  • Palma, C.F., S. 2013. Modelling of tar formation and evolution for biomass gasification: A review, Applied Energy, Cilt. 111, s. 129-141.

Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®

Year 2021, Volume: 23 Issue: 67, 309 - 318, 15.01.2021
https://doi.org/10.21205/deufmd.2021236727

Abstract

Excessive consumption of fossil fuels due to energy demand leads to an increase in the amount of CO2 emitted to the environment. Gasification technology enables clean and efficient use of fossil fuels such as coal, which cause CO2 emissions predominantly. Gasification can be utilized under several atmospheres such as air, steam, O2/CO2 mixture, etc. The reduction of inert gases (N2) and the increase of CO concentration at high temperatures in syngas provides high-quality gas. Among the commercial gasifiers, entrained flow gasifiers have many advantages such as obtaining tar-free synthesis gas, high carbon conversion efficiency, and production in high capacities. In addition, there is no limitation to the type of coal to be used. The performance of the entrained flow gasifiers can be examined by simulation programs and design optimization can be performed at a low cost. This study aims to develop a new entrained flow gasifier model for Turkish Lignite (Çan coal) using the Aspen Plus® thermodynamic simulation program and the effects of various parameters on the synthesis gas were investigated by sensitivity analysis.

References

  • Asif, M. and T. Muneer. S. 2007. Energy supply, its demand and security issues for developed and emerging economies, Renewable and sustainable energy reviews, Cilt. 11, s. 1388-1413.
  • Higman, C., 2008. Gasification, in Combustion engineering issues for solid fuel systems. 2008, Elsevier. 423-468s.
  • Kern, S., C. Pfeifer, and H. Hofbauer. S. 2013. Gasification of lignite in a dual fluidized bed gasifier—Influence of bed material particle size and the amount of steam, Fuel processing technology, Cilt. 111, s. 1-13.
  • Song, Y., J. Feng. S. 2013. Impact of biomass on energy and element utilization efficiency during co-gasification with coal, Fuel processing technology, Cilt. 115, s. 42-49.
  • Emun, F., M. Gadalla. S. 2010. Integrated gasification combined cycle (IGCC) process simulation and optimization, Computers & chemical engineering, Cilt. 34, s. 331-338.
  • Asif, M., C.-u. Bak. S. 2015. Performance evaluation of integrated gasification combined cycle (IGCC) utilizing a blended solution of ammonia and 2-amino-2-methyl-1-propanol (AMP) for CO2 capture, Fuel, Cilt. 160, s. 513-524.
  • Xu, M., R. Yan. S. 2004. Status of trace element emission in a coal combustion process: a review, Fuel Processing Technology, Cilt. 85, s. 215-237.
  • Speight, J., S. 2008. Synthetic fuels handbook: properties, process and performance, Cilt.
  • Giuffrida, A., M.C. Romano, and G. Lozza. S. 2011. Thermodynamic analysis of air-blown gasification for IGCC applications, Applied energy, Cilt. 88, s. 3949-3958.
  • Leijenhorst, E.J., D. Assink. S. 2015. Entrained flow gasification of straw-and wood-derived pyrolysis oil in a pressurized oxygen blown gasifier, Biomass and Bioenergy, Cilt. 79, s. 166-176.
  • Higman, C. and S. Tam. S. 2013. Advances in coal gasification, hydrogenation, and gas treating for the production of chemicals and fuels, Chemical reviews, Cilt. 114, s. 1673-1708.
  • Higman, C. State of the gasification industry: worldwide gasification database 2014 update. in Gasification Technologies Conference Washington, DC. 2014.
  • Xu, T., S.V. Pisupati, and S. Bhattacharya. S. 2019. Comparison of entrained flow CO2 gasification behaviour of three low-rank coals–Victorian brown coal, Beulah lignite, and Inner Mongolia lignite, Fuel, Cilt. 249, s. 206-218.
  • Qin, S., S. Chang, and Q. Yao. S. 2018. Modeling, thermodynamic and techno-economic analysis of coal-to-liquids process with different entrained flow coal gasifiers, Applied energy, Cilt. 229, s. 413-432.
  • Govind, R. and J. Shah. S. 1984. Modeling and simulation of an entrained flow coal gasifier, AIChE Journal, Cilt. 30, s. 79-92.
  • Sahoo, B.B., N. Sahoo, and U.K. Saha. S. 2012. Effect of H2: CO ratio in syngas on the performance of a dual fuel diesel engine operation, Applied Thermal Engineering, Cilt. 49, s. 139-146.
  • Xu, S., Y. Ren. S. 2014. Development of a novel 2-stage entrained flow coal dry powder gasifier, Applied energy, Cilt. 113, s. 318-323.
  • Gómez-Barea, A. and B. Leckner. S. 2010. Modeling of biomass gasification in fluidized bed, Progress in Energy and Combustion Science, Cilt. 36, s. 444-509.
  • Couto, N., A. Rouboa. S. 2013. Influence of the biomass gasification processes on the final composition of syngas, Energy Procedia, Cilt. 36, s. 596-606.
  • Couto, N.D., V.B. Silva. S. 2015. Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices, Energy, Cilt. 93, s. 864-873.
  • Puig-Gamero, M., J. Argudo-Santamaria. S. 2018. Three integrated process simulation using aspen plus®: Pine gasification, syngas cleaning and methanol synthesis, Energy conversion and management, Cilt. 177, s. 416-427.
  • Ergudenier, A., 1993. Gasification of wheat straw in a dual-distributor type fluidized bed reactor. 793, Thesis (Ph. D.)--Technical University of Nova Scotia.
  • Sadaka, S.S., A. Ghaly, and M. Sabbah. S. 2002. Two phase biomass air-steam gasification model for fluidized bed reactors: Part I—model development, Biomass and bioenergy, Cilt. 22, s. 439-462.
  • Lv, P., Z. Xiong. S. 2004. An experimental study on biomass air–steam gasification in a fluidized bed, Bioresource technology, Cilt. 95, s. 95-101.
  • Nayır, T., 2012. Kömür Ve Biyokütle Karışımlarının Gazlaştırılması Ve Aspen Hysys® Programı İle Simulasyonu. 794, Fen Bilimleri Enstitüsü.
  • Ünlü, A., U. Kayahan. S. 2017. Pilot scale entrained flow gasification of Turkish lignites, Journal of the Energy Institute, Cilt. 90, s. 159-165.
  • Niu, M., Y. Huang. S. 2013. Simulation of syngas production from municipal solid waste gasification in a bubbling fluidized bed using Aspen Plus, Industrial & Engineering Chemistry Research, Cilt. 52, s. 14768-14775.
  • Guo, F., Y. Dong. S. 2014. Effect of design and operating parameters on the gasification process of biomass in a downdraft fixed bed: An experimental study, International Journal of Hydrogen Energy, Cilt. 39, s. 5625-5633.
  • Gil, J., J. Corella. S. 1999. Biomass gasification in atmospheric and bubbling fluidized bed: effect of the type of gasifying agent on the product distribution, Biomass and bioenergy, Cilt. 17, s. 389-403.
  • Shen, L., Y. Gao, and J. Xiao. S. 2008. Simulation of hydrogen production from biomass gasification in interconnected fluidized beds, Biomass and Bioenergy, Cilt. 32, s. 120-127.
  • Dou, B. and Y. Song. S. 2010. A CFD approach on simulation of hydrogen production from steam reforming of glycerol in a fluidized bed reactor, International Journal of Hydrogen Energy, Cilt. 35, s. 10271-10284.
  • Ku, X., T. Li, and T. Løvås. S. 2014. Eulerian–Lagrangian simulation of biomass gasification behavior in a high-temperature entrained-flow reactor, Energy & Fuels, Cilt. 28, s. 5184-5196.
  • Acharya, B., A. Dutta, and P. Basu. S. 2010. An investigation into steam gasification of biomass for hydrogen enriched gas production in presence of CaO, International Journal of Hydrogen Energy, Cilt. 35, s. 1582-1589.
  • Han, L., Q. Wang. S. 2011. Hydrogen production via CaO sorption enhanced anaerobic gasification of sawdust in a bubbling fluidized bed, International journal of hydrogen energy, Cilt. 36, s. 4820-4829.
  • Palma, C.F., S. 2013. Modelling of tar formation and evolution for biomass gasification: A review, Applied Energy, Cilt. 111, s. 129-141.
There are 35 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Furkan Kartal 0000-0003-0638-5653

Şebnem Cingisiz 0000-0001-9275-4974

Uğur Özveren 0000-0002-3790-0606

Publication Date January 15, 2021
Published in Issue Year 2021 Volume: 23 Issue: 67

Cite

APA Kartal, F., Cingisiz, Ş., & Özveren, U. (2021). Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(67), 309-318. https://doi.org/10.21205/deufmd.2021236727
AMA Kartal F, Cingisiz Ş, Özveren U. Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. DEUFMD. January 2021;23(67):309-318. doi:10.21205/deufmd.2021236727
Chicago Kartal, Furkan, Şebnem Cingisiz, and Uğur Özveren. “Investigation of Çan Coal Gasification in Entrained Flow Gasifier by Using Aspen PLUS®”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 67 (January 2021): 309-18. https://doi.org/10.21205/deufmd.2021236727.
EndNote Kartal F, Cingisiz Ş, Özveren U (January 1, 2021) Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 67 309–318.
IEEE F. Kartal, Ş. Cingisiz, and U. Özveren, “Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®”, DEUFMD, vol. 23, no. 67, pp. 309–318, 2021, doi: 10.21205/deufmd.2021236727.
ISNAD Kartal, Furkan et al. “Investigation of Çan Coal Gasification in Entrained Flow Gasifier by Using Aspen PLUS®”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/67 (January 2021), 309-318. https://doi.org/10.21205/deufmd.2021236727.
JAMA Kartal F, Cingisiz Ş, Özveren U. Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. DEUFMD. 2021;23:309–318.
MLA Kartal, Furkan et al. “Investigation of Çan Coal Gasification in Entrained Flow Gasifier by Using Aspen PLUS®”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 67, 2021, pp. 309-18, doi:10.21205/deufmd.2021236727.
Vancouver Kartal F, Cingisiz Ş, Özveren U. Investigation of Çan Coal Gasification in Entrained Flow Gasifier by using Aspen PLUS®. DEUFMD. 2021;23(67):309-18.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.