Research Article
BibTex RIS Cite

Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi

Year 2021, Volume: 23 Issue: 67, 147 - 155, 15.01.2021
https://doi.org/10.21205/deufmd.2021236713

Abstract

Bu çalışmada, cam elyaf takviyeli kompozitlerin mekanik özelliklerine ağırlıkça farklı oranlarda çam ve meşe palamudu tozu takviyesinin etkisi incelenmiştir. Parçacık takviyeli olarak üretilen kompozitlerin çekme, basma ve üç nokta eğilme deneyleri oda sıcaklığında gerçekleştirilmiş ve bu sonuçlar saf cam elyaf takviyeli kompozitler ile karşılaştırılmıştır. Ayrıca, düşük hızlı darbe sonrası bası testleri yardımıyla kompozitlerin darbe yüklemesinden sonraki bası dayanımlarının değişimi incelenmiştir. Darbe enerjisi olarak 20J, 30J ve 40J belirlenmiştir. Elde edilen sonuçlara göre, iki farklı takviye malzemesinde kompozitlerin çekme mukavemeti ağırlıkça %2,5 oranında artarken %5 oranında ise azalmaktadır. Eğilme mukavemet değerleri ise meşe palamudu takviyesinde önemli oranda değişmezken çam kozalağı takviyesinde azalmaktadır.

Supporting Institution

-

Project Number

-

Thanks

-

References

  • [1] Mazur, K., Kuciel, s. 2019. Mechanical and Hydrothermal Aging Behaviour of Polyhydroxybutyrate-Co-Valerate (PHBV) Composites Reinforced by Natural Fibres, MOLECULES, 24(19), 1-15. DOI: 10.3390/molecules24193538
  • [2] Bledzki, A.K.; Jaszkiewicz, A. 2010. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—A comparative study to PP, Compos. Sci. Technol, 70(12), 1687-1696. DOI: 10.1016/j.compscitech.2010.06.005
  • [3] Kuciel, S.; Mazur, K.; Jakubowska, P. 2019. Novel biorenewable composites based on poly (3-hydroxybutyrateco- 3-hydroxyvalerate) with natural fillers, J. Polym. Env., 27(4), 803-815. DOI: 10.1007/s10924-019-01392-4
  • [4] Kılınç, A.C., Atagur, M., Ozdemir, O., Sen, I., Kucukdogan, N., Sever, K., Seydibeyoglu, O., Sarikanat, M., Seki, Y. 2016. Manufacturing and characterization of vine stem reinforced high density polyethylene composites Compos Part B-Eng., 91, 267–74. DOI: 10.1016/j.compositesb.2016.01.033
  • [5] Bakar MBA, Ishak ZAM, Taib RM, Rozman HD, Jani SM. 2010, Flammability and Mechanical Properties of Wood Flour-Filled Polypropylene Composites, Journal Of Applıed Polymer Scıence, 116(5), 2714-2722. DOI: 10.1002/app.31791
  • [6] Nourbakhsh A, Ashori A. 2010, Wood plastic composites from agro-waste materials: analysis of mechanical properties, Bioresour Technol, 101(7), 2525-2528. DOI: 10.1016/j.biortech.2009.11.040
  • [7] Wang Z, Wang J-H, Xu Q, Yang Q, Zhang X-Y, Zhao Y-D. 2009, Evaporative deposition of lipophilic quantum dots for an enzyme modified electrode, Microchim Acta, 166, 133-138. DOI: 10.1007/s00604-009-0173-z
  • [8] Yao F, Wu Q, Lei Y, Xu Y. 2008, Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading, Ind Crops Prod 28(1), 63-72. DOI: 10.1016/j.indcrop.2008.01.007
  • [9] Ashori A, Nourbakhsh A. 2010, Bio-based composites from waste agricultural residues, Waste Management, 30(4), 680-684. DOI: 10.1016/j.wasman.2009.08.003
  • [10] Habibi Y, El-Zawawy WK, Ibrahim MM, Dufresne A. 2008, Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues, Compos Sci Technol, 68, 1877-1885. DOI: 10.1016/j.compscitech.2008.01.008
  • [11] Essabir H, Nekhlaoui S, Malha M, Bensalah MO, Arrakhiz FZ, Qaiss A, Bouhfid, R. 2013, Bio-composites based on polypropylene reinforced with Almond Shells particles: mechanical and thermal properties, Materıals & Desıgn, 51,225-230. DOI: 10.1016/j.matdes.2013.04.031
  • [12] Zahedi M, Pirayesh H, Khanjanzadeh H, Tabar MM. 2013, Organo-modified montmorillonite reinforced walnut shell/polypropylene composites, Materıals & Desıgn, 51, 803-809. DOI: 10.1016/j.matdes.2013.05.007
  • [13] Bledzki AK, Mamun AA, Volk J. 2010, Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties, Compos Sci Technol 70(5), 840-846. DOI: 10.1016/j.compscitech.2010.01.022
  • [14] Arrakhiz, FZ, Benmoussa K, Bouhfid R and Qaiss A. 2013, Pine cone fiber/clay hybrid composite: mechanical and thermal properties, Materıals & Desıgn, 50, 376–381. DOI: 10.1016/j.matdes.2013.03.033
  • [15] Agayev, S., Ozdemir, O. 2019, Fabrication of high density polyethylene composites reinforced with pine cone powder: mechanical and low velocity impact performances, Materıals Research Express, 6(4), 045312. DOI: 10.1088/2053-1591/aafc42
  • [16] Baştürk, B.S., Kanbur, K., Polatoğlu, İ., Yürekli Y. 2015, Mechanical Properties of Acorn and Pine Cone Filled Polymer Composites, American Scientific Research Journal for Engineering, Technology, and Sciences, 14(2), 144-153.
  • [17] Hazizan, MA., Cantwell WJ. 2002, The low velocity impact response of foam-based sandwich structures, Compos Part B-Eng., 33, 193–204. DOI: 10.1016/S1359-8368(02)00009-4.
  • [18] Hassan, MZ., Cantwell, WJ, 2012, The influence of core properties on the perforation resistance of sandwich structures – an experimental study, Compos Part B-Eng., 43(8), 3231–3138. DOI: 10.1016/j.compositesb.2012.03.012
  • [19] Ozdemir, O., Oztoprak, N., Kandas, H. 2018, Single and repeated impact behaviors of bio-sandwich structures consisting of thermoplastic face sheets and different balsa core thicknesses, Compos Part B-Eng., 149, 49–57. DOI: 10.1016/j.compositesb.2018.05.016
  • [20] Al-Shamary, A.K.J., Karakuzu, R., Ozdemir, O. 2016, Low-velocity impact response of sandwich composites with different foam core configurations, Journal Of Sandwıch Structures & Materıals, 18(6), 754–768. DOI: 10.1177/1099636216653267
  • [21] Dogan, A., Arikan, V. 2017, Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites, Composites Part B-Eng., 127, 63–69. DOI: 10.1016/j.compositesb.2017.06.027
  • [22] Baba, B.O. 2013, Impact response of sandwich beams with various curvatures and debonds, Journal Of Sandwıch Structures & Materıals, 15, 137–155. DOI: 10.1177/1099636212460543
  • [23] Reddy, N., Yang, Y.Q. 2005, Structure and properties of high quality natural cellulose fibers from cornstalks, Polymer, 46, 5494–5500. DOI: 10.1016/j.polymer.2005.04.073
  • [24] Wang, Z.W., Zhao, J.P., Zhang, X. 2018, Finite element analysis of composite laminates subjected to low-velocity impact based on multiple failure criteria, Materıals Research Express, 5, 065320. DOI: 10.1088/2053-1591/aacca3
  • [25] Al-Maharma, A.Y., Sendur, P. 2018, The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/epoxy on low velocity impact response of a composite plate, Materials Research Express, 5, 055021. DOI: 10.1088/2053-1591/aac1cf
  • [26] Singh, K., Kand, Rawat P. 2018, Mechanical behavior of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings, Materials Research Express, 5, 055012. DOI: 10.1088/2053-1591/aabf99
  • [27] Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J.P., Smith, A., Guinebretiere, R., Gloaguen, V., Krausz, P. 2008, Influence of various chemical treatments on the composition and structure of hemp fibres, Composites Part A Applied Science and Manufacturing, 39, 514–522. DOI: 10.1016/j.compositesa.2007.12.001
  • [28] Mwaikambo, L.Y., Ansell, M.P. 2002, Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, Journal of Applied Polymer Science, 84(12), 2222–2234. DOI: 10.1002/app.10460
  • [29] Haque, M.M., Rahman, R., Islam, M.N., Huque, M.M., Hasan, M. 2010, Mechanical Properties of Polypropylene Composites Reinforced with Chemically Treated Coir and Abaca Fiber, J Reinf Plast Comp., 29, 2253–2261. DOI: 10.1177/0731684409343324

Investigation of Mechanical Behaviors of Pine and Acorn Powder Reinforced Composites

Year 2021, Volume: 23 Issue: 67, 147 - 155, 15.01.2021
https://doi.org/10.21205/deufmd.2021236713

Abstract

In this study, the effect of different amounts of pine and acorn powder reinforcement on the mechanical properties of glass fiber reinforced composites was investigated. Tensile, compression and three-point bending tests of composites which produced as particle reinforcements were carried out at room temperature and these results were compared with pure glass fiber reinforced composites. Besides, the variation of compressive strength values of composites after impact loading was investigated with the help of compression tests. 20J, 30J and 40J are determined as the impact energy level. According to the results, the tensile strength values of composites increased in the case of 2.5 wt% and decreased in the case of 5 wt% pine cone and acorn powder loadings. Also, bending strength values did not change significantly in the acorn powder reinforced composites, but it decreased in the pine cone powder reinforced composites.

Project Number

-

References

  • [1] Mazur, K., Kuciel, s. 2019. Mechanical and Hydrothermal Aging Behaviour of Polyhydroxybutyrate-Co-Valerate (PHBV) Composites Reinforced by Natural Fibres, MOLECULES, 24(19), 1-15. DOI: 10.3390/molecules24193538
  • [2] Bledzki, A.K.; Jaszkiewicz, A. 2010. Mechanical performance of biocomposites based on PLA and PHBV reinforced with natural fibres—A comparative study to PP, Compos. Sci. Technol, 70(12), 1687-1696. DOI: 10.1016/j.compscitech.2010.06.005
  • [3] Kuciel, S.; Mazur, K.; Jakubowska, P. 2019. Novel biorenewable composites based on poly (3-hydroxybutyrateco- 3-hydroxyvalerate) with natural fillers, J. Polym. Env., 27(4), 803-815. DOI: 10.1007/s10924-019-01392-4
  • [4] Kılınç, A.C., Atagur, M., Ozdemir, O., Sen, I., Kucukdogan, N., Sever, K., Seydibeyoglu, O., Sarikanat, M., Seki, Y. 2016. Manufacturing and characterization of vine stem reinforced high density polyethylene composites Compos Part B-Eng., 91, 267–74. DOI: 10.1016/j.compositesb.2016.01.033
  • [5] Bakar MBA, Ishak ZAM, Taib RM, Rozman HD, Jani SM. 2010, Flammability and Mechanical Properties of Wood Flour-Filled Polypropylene Composites, Journal Of Applıed Polymer Scıence, 116(5), 2714-2722. DOI: 10.1002/app.31791
  • [6] Nourbakhsh A, Ashori A. 2010, Wood plastic composites from agro-waste materials: analysis of mechanical properties, Bioresour Technol, 101(7), 2525-2528. DOI: 10.1016/j.biortech.2009.11.040
  • [7] Wang Z, Wang J-H, Xu Q, Yang Q, Zhang X-Y, Zhao Y-D. 2009, Evaporative deposition of lipophilic quantum dots for an enzyme modified electrode, Microchim Acta, 166, 133-138. DOI: 10.1007/s00604-009-0173-z
  • [8] Yao F, Wu Q, Lei Y, Xu Y. 2008, Rice straw fiber-reinforced high-density polyethylene composite: effect of fiber type and loading, Ind Crops Prod 28(1), 63-72. DOI: 10.1016/j.indcrop.2008.01.007
  • [9] Ashori A, Nourbakhsh A. 2010, Bio-based composites from waste agricultural residues, Waste Management, 30(4), 680-684. DOI: 10.1016/j.wasman.2009.08.003
  • [10] Habibi Y, El-Zawawy WK, Ibrahim MM, Dufresne A. 2008, Processing and characterization of reinforced polyethylene composites made with lignocellulosic fibers from Egyptian agro-industrial residues, Compos Sci Technol, 68, 1877-1885. DOI: 10.1016/j.compscitech.2008.01.008
  • [11] Essabir H, Nekhlaoui S, Malha M, Bensalah MO, Arrakhiz FZ, Qaiss A, Bouhfid, R. 2013, Bio-composites based on polypropylene reinforced with Almond Shells particles: mechanical and thermal properties, Materıals & Desıgn, 51,225-230. DOI: 10.1016/j.matdes.2013.04.031
  • [12] Zahedi M, Pirayesh H, Khanjanzadeh H, Tabar MM. 2013, Organo-modified montmorillonite reinforced walnut shell/polypropylene composites, Materıals & Desıgn, 51, 803-809. DOI: 10.1016/j.matdes.2013.05.007
  • [13] Bledzki AK, Mamun AA, Volk J. 2010, Barley husk and coconut shell reinforced polypropylene composites: the effect of fibre physical, chemical and surface properties, Compos Sci Technol 70(5), 840-846. DOI: 10.1016/j.compscitech.2010.01.022
  • [14] Arrakhiz, FZ, Benmoussa K, Bouhfid R and Qaiss A. 2013, Pine cone fiber/clay hybrid composite: mechanical and thermal properties, Materıals & Desıgn, 50, 376–381. DOI: 10.1016/j.matdes.2013.03.033
  • [15] Agayev, S., Ozdemir, O. 2019, Fabrication of high density polyethylene composites reinforced with pine cone powder: mechanical and low velocity impact performances, Materıals Research Express, 6(4), 045312. DOI: 10.1088/2053-1591/aafc42
  • [16] Baştürk, B.S., Kanbur, K., Polatoğlu, İ., Yürekli Y. 2015, Mechanical Properties of Acorn and Pine Cone Filled Polymer Composites, American Scientific Research Journal for Engineering, Technology, and Sciences, 14(2), 144-153.
  • [17] Hazizan, MA., Cantwell WJ. 2002, The low velocity impact response of foam-based sandwich structures, Compos Part B-Eng., 33, 193–204. DOI: 10.1016/S1359-8368(02)00009-4.
  • [18] Hassan, MZ., Cantwell, WJ, 2012, The influence of core properties on the perforation resistance of sandwich structures – an experimental study, Compos Part B-Eng., 43(8), 3231–3138. DOI: 10.1016/j.compositesb.2012.03.012
  • [19] Ozdemir, O., Oztoprak, N., Kandas, H. 2018, Single and repeated impact behaviors of bio-sandwich structures consisting of thermoplastic face sheets and different balsa core thicknesses, Compos Part B-Eng., 149, 49–57. DOI: 10.1016/j.compositesb.2018.05.016
  • [20] Al-Shamary, A.K.J., Karakuzu, R., Ozdemir, O. 2016, Low-velocity impact response of sandwich composites with different foam core configurations, Journal Of Sandwıch Structures & Materıals, 18(6), 754–768. DOI: 10.1177/1099636216653267
  • [21] Dogan, A., Arikan, V. 2017, Low-velocity impact response of E-glass reinforced thermoset and thermoplastic based sandwich composites, Composites Part B-Eng., 127, 63–69. DOI: 10.1016/j.compositesb.2017.06.027
  • [22] Baba, B.O. 2013, Impact response of sandwich beams with various curvatures and debonds, Journal Of Sandwıch Structures & Materıals, 15, 137–155. DOI: 10.1177/1099636212460543
  • [23] Reddy, N., Yang, Y.Q. 2005, Structure and properties of high quality natural cellulose fibers from cornstalks, Polymer, 46, 5494–5500. DOI: 10.1016/j.polymer.2005.04.073
  • [24] Wang, Z.W., Zhao, J.P., Zhang, X. 2018, Finite element analysis of composite laminates subjected to low-velocity impact based on multiple failure criteria, Materıals Research Express, 5, 065320. DOI: 10.1088/2053-1591/aacca3
  • [25] Al-Maharma, A.Y., Sendur, P. 2018, The effect of interlaminar graphene nano-sheets reinforced e-glass fiber/epoxy on low velocity impact response of a composite plate, Materials Research Express, 5, 055021. DOI: 10.1088/2053-1591/aac1cf
  • [26] Singh, K., Kand, Rawat P. 2018, Mechanical behavior of glass/epoxy composite laminate with varying amount of MWCNTs under different loadings, Materials Research Express, 5, 055012. DOI: 10.1088/2053-1591/aabf99
  • [27] Le Troedec, M., Sedan, D., Peyratout, C., Bonnet, J.P., Smith, A., Guinebretiere, R., Gloaguen, V., Krausz, P. 2008, Influence of various chemical treatments on the composition and structure of hemp fibres, Composites Part A Applied Science and Manufacturing, 39, 514–522. DOI: 10.1016/j.compositesa.2007.12.001
  • [28] Mwaikambo, L.Y., Ansell, M.P. 2002, Chemical modification of hemp, sisal, jute, and kapok fibers by alkalization, Journal of Applied Polymer Science, 84(12), 2222–2234. DOI: 10.1002/app.10460
  • [29] Haque, M.M., Rahman, R., Islam, M.N., Huque, M.M., Hasan, M. 2010, Mechanical Properties of Polypropylene Composites Reinforced with Chemically Treated Coir and Abaca Fiber, J Reinf Plast Comp., 29, 2253–2261. DOI: 10.1177/0731684409343324
There are 29 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Halis Kandas This is me 0000-0002-7556-6979

Okan Özdemir 0000-0003-4055-6874

Project Number -
Publication Date January 15, 2021
Published in Issue Year 2021 Volume: 23 Issue: 67

Cite

APA Kandas, H., & Özdemir, O. (2021). Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(67), 147-155. https://doi.org/10.21205/deufmd.2021236713
AMA Kandas H, Özdemir O. Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. DEUFMD. January 2021;23(67):147-155. doi:10.21205/deufmd.2021236713
Chicago Kandas, Halis, and Okan Özdemir. “Çam Ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 67 (January 2021): 147-55. https://doi.org/10.21205/deufmd.2021236713.
EndNote Kandas H, Özdemir O (January 1, 2021) Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 67 147–155.
IEEE H. Kandas and O. Özdemir, “Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi”, DEUFMD, vol. 23, no. 67, pp. 147–155, 2021, doi: 10.21205/deufmd.2021236713.
ISNAD Kandas, Halis - Özdemir, Okan. “Çam Ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/67 (January 2021), 147-155. https://doi.org/10.21205/deufmd.2021236713.
JAMA Kandas H, Özdemir O. Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. DEUFMD. 2021;23:147–155.
MLA Kandas, Halis and Okan Özdemir. “Çam Ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 67, 2021, pp. 147-55, doi:10.21205/deufmd.2021236713.
Vancouver Kandas H, Özdemir O. Çam ve Meşe Palamudu Tozu Takviyeli Kompozitlerin Mekanik Özelliklerinin İncelenmesi. DEUFMD. 2021;23(67):147-55.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.