Research Article
BibTex RIS Cite

Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu ve in vitro Biyogörüntüleme Potansiyelinin Araştırılması

Year 2021, Volume: 23 Issue: 68, 595 - 605, 24.05.2021
https://doi.org/10.21205/deufmd.2021236821

Abstract

Bu çalışmanın amacı bor nitrür (BN) nanoparçacıklarının floresan bir boya olan rodamin 123 (Rd) ile etiketlenmesi ve biyogörüntüleme amaçlı kullanımının in vitro ortamda araştırılmasıdır. Öncelikli olarak, rodamin 123 etiketi bor nitrür nanoparçacıklarına glutaraldehid çapraz bağlayıcısı aracılığıyla bağlanarak BN-Rd nanoparçacıkları üretilmiş ve SEM, UV-görünür bölge spektroskopisi, MTT hücre proliferasyon testi, ışık mikroskobu ve floresan mikroskobu analizleri ile karakterize edilmiştir. Sitotoksik olmayan konsantrasyonlardaki BN-Rd nanoparçacıkları insan prostat kanseri hücreleri (PC-3) ile insan embriyonik böbrek hücreleri (HEK-293) üzerine uygulanmış ve hücreler floresan mikroskobu altında incelenerek BN-Rd’nin biyogörüntüleme potansiyeli in vitro ortamda araştırılmıştır. Sonuç olarak, SEM analizlerinde ~40 nm boyuta sahip olduğu belirlenen BN ve BN-Rd 30 µg/ml ve üzerindeki konsantrasyonlarda sitotoksik etki göstermiştir. Işık mikroskobu altında incelenen nanoparçacık uygulanmış hücre morfolojileri MTT sonuçlarını destekler nitelikte bulunmuştur. Her iki hücre hattı üzerine de uygulanan BN-Rd’nin 10 µg/ml konsantrasyonda hücreler ile etkileşime geçtiği ve hücrelerin in vitro ortamda floresan mikroskobu altında ışıma yaptığı gözlenmiştir. Bu çalışmadan elde edilen bulgular ışığında rodamin 123 floresan boyası ile etiketli bor nitrür nanoparçacıklarının biyogörüntüleme uygulamalarında kullanım potansiyeli ortaya konmuştur.

Thanks

Teşekkür Bu çalışmanın ön deneme sürecine katkı sağlayan İzmir Özel Yeşeren Fen Lisesi öğretmenlerinden Adil CAN’a ve öğrencisi İdil Bilge TUNÇ’a teşekkür ederim.

References

  • [1] Apostolova, N., Rovira-Llopis, S., Baldoví, H.G., Navalon, S., Asiri, A.M., Victor, V.M., Garcia, H., Herance, J.R. 2015. Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress, RSC Advances, Cilt. 5(97), s. 79423–79432. DOI:https://doi.org/10.1039/c5ra12794g
  • [2] Aydin, H. 2018. Nanoyapılı Hegzagonal Bor Nitrür Üretimi ve Karakterizasyonu, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, Cilt. 30(2), s. 269–275. DOI:https://dergipark.org.tr/en/pub/fumbd/issue/39197/461582
  • [3] Chessel, A. 2017. An Overview of data science uses in bioimage informatics, Methods, Cilt. 115, s. 110–118. DOI:https://doi.org/10.1016/j.ymeth.2016.12.014
  • [4] Etimaden - TÜRKİYE’DE BOR. http://www.etimaden.gov.tr/turkiyede-bor (Erişim Tarihi 29.07.2020)
  • [5] Forster, S., Thumser, A.E., Hood, S.R., Plant, N. 2012. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays, PLoS ONE, Cilt. 7(3), e33253. DOI:https://doi.org/10.1371/journal.pone.0033253
  • [6] Kainthola, A., Bijalwan, K., Negi, S., Sharma, H., Dwivedi, C. 2020. Hydrothermal synthesis of highly stable boron nitride nanoparticles, Materials Today: Proceedings, Cilt. 28, s. 138–140. DOI:https://doi.org/10.1016/j.matpr.2020.01.452
  • [7] Kumar, V., Lahiri, D., Lahiri, I. 2018. Synthesis of Boron Nitride Nanotubes and Boron Nitride Nanoflakes with Potential Application in Bioimaging, Materials Today: Proceedings, Cilt. 5(8), s. 16756–16762. DOI:https://doi.org/10.1016/j.matpr.2018.06.037
  • [8] Pamukcu, A., Portakal, H.S., Eroglu, E. 2018. Terapötik Moleküllerin Aktariminda Kullanilan Yeni Nesil Biyomalzemeler, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt. 11(3), s. 524-542. DOI: 10.18185/erzifbed.339405.
  • [9] Kutova, O.M., Guryev, E.L., Sokolova, E.A., Alzeibak, R., Balalaeva, I.V. 2019. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency, Cancers, Cilt. 11(1), s. 68. DOI: https://doi.org/10.3390/cancers11010068
  • [10] Raj, S., Khurana, S., Choudhari, R., Kesari, K.K., Kamal, M.A., Garg, N., Ruokolainen, J., Das, B.C., Kumar, D. 2019. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy, Seminars in Cancer Biology, DOI:https://doi.org/https://doi.org/10.1016/j.semcancer.2019.11.002
  • [11] Eroglu, E., Portakal, H.S., Pamukcu, A. 2020. A New Generation Nanotherapeutic: pHEMA-Chitosan Nanocomposites in siRNA Delivery, Current Nanoscience, 16. DOI:10.2174/1573413716666200110093715.
  • [12] Eroglu, E., Tiwari, P.M., Waffo, A.B., Miller, M.E., Vig, K., Dennis, V.A., Singh, S.R. 2013. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system, International journal of nanomedicine, Cilt. 8, s. 1403–1415. DOI:https://doi.org/10.2147/IJN.S43168
  • [13] Malik, N., Arfin, T., Khan, A.U. 2019. Chapter 13 - Graphene nanomaterials: chemistry and pharmaceutical perspectives. ss. 373–402. Malik, N., Arfin, T., Khan, A.U. ed. 2019. Nanomaterials for Drug Delivery and Therapy, Elsevier, 551s. DOI:https://doi.org/https://doi.org/10.1016/B978-0-12-816505-8.00002-3
  • [14] Han, W., Ma, Z., Liu, S., Ge, C., Wang, L., Zhang, X. 2017. Highly-dispersible boron nitride nanoparticles by spray drying and pyrolysis, Ceramics International, Cilt. 43(13), s. 10192–10200. DOI:https://doi.org/10.1016/j.ceramint.2017.05.045
  • [15] Pandey, S., Bodas, D. 2020. High-quality quantum dots for multiplexed bioimaging: A critical review, Advances in Colloid and Interface Science, Cilt. 278, s. 102137. DOI:https://doi.org/10.1016/j.cis.2020.102137
  • [16] Qi, J., Hu, X., Dong, X., Lu, Y., Lu, H., Zhao, W., Wu, W. 2019. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool, Advanced Drug Delivery Reviews, Cilt. 143, s. 206–225. DOI:https://doi.org/10.1016/j.addr.2019.05.009
  • [17] Shen, Q., Wang, S., Yang, N. Di, Zhang, C., Wu, Q., Yu, C. 2020. Recent development of small-molecule organic fluorophores for multifunctional bioimaging in the second near-infrared window, Journal of Luminescence, Cilt. 225, s. 117338. DOI:https://doi.org/10.1016/j.jlumin.2020.117338
  • [18] Sukhorukova, I.V, Zhitnyak, I.Y., Kovalskii, A.M., Matveev, A.T., Lebedev, O.I., Li, X., Gloushankova, N.A., Golberg, D., Shtansky, D.V. 2015. Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems, ACS Applied Materials & Interfaces, Cilt. 7(31), s. 17217–17225. DOI:https://doi.org/10.1021/acsami.5b04101
  • [19] Zalba, S., Ten Hagen, T.L. 2017. Cell membrane modulation as adjuvant in cancer therapy, Cancer treatment reviews, Cilt. 52, s. 48–57. DOI:https://doi.org/10.1016/j.ctrv.2016.10.008
  • [20] Chithrani, B.D.; Chan, W.C.W. 2007. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-coated Gold Nanoparticles of Different Sizes and Shapes, Nano Letters, Cilt. 7, s. 1542-1550. DOI:10.1021/nl070363y.
  • [21] Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. 2006. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, Cilt. 6, s. 662-668. DOI:10.1021/nl052396o.
  • [22] Ciofani, G., Danti, S., Genchi, G.G., Mazzolai, B. Mattoli, V. 2013. Boron Nitride Nanotubes: Biocompatibility and Potential Spill‐Over in Nanomedicine, Small, Cilt. 9, s. 1672-1685. DOI:10.1002/smll.201201315
  • [23] Horváth, L., Magrez, A., Golberg, D., Zhi, C., Bando, Y., Smajda, R., Horvath, E., Forró, L., Schwaller, B. 2011. In Vitro Investigation of the Cellular Toxicity of Boron Nitride Nanotubes, ACS NANO, Cilt. 5, s. 3800-3810. DOI:10.1021/nn200139h.
  • [24] Rasel, A., Li, T., Nguyen, D., Singh, S., Zhou, Y., Xiao, Y., Gu, Y.T. 2015. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization. Journal of Nanoparticle Research, Cilt. 17(11), s. 441. DOI:10.1007/s11051-015-3248-2.

Characterization of Rhodamine 123-Labeled Boron Nitride Nanoparticles and Investigation of in vitro Bioimaging Potential

Year 2021, Volume: 23 Issue: 68, 595 - 605, 24.05.2021
https://doi.org/10.21205/deufmd.2021236821

Abstract

The aim of this study is to label boron nitride (BN) nanoparticles with a fluorescent dye, rhodamine 123 (Rd), and to investigate its use for bioimaging in vitro condition. First, BN-Rd nanoparticles were produced by binding rhodamine 123 tag to boron nitride nanoparticles via glutaraldehyde crosslinker and characterized by SEM, UV-visible spectroscopy, MTT cell proliferation test, light microscope and fluorescence microscope analyses. BN-Rd nanoparticles at non-cytotoxic concentrations were applied on human prostate cancer cells (PC-3) and human embriyonic kidney cells (HEK-293) and the bioimaging potential of BN-Rd was investigated in vitro by examining the cells under fluorescence microscopy. As a result, BN and BN-Rd, which were determined to have a size of ~40 nm in SEM analysis, showed a cytotoxic effect at concentrations of 30 µg/ml and above. The nanoparticle-treated cell morphologies examined under a light microscope was found to support MTT results. It was observed that BN-Rd, at a concentration of 10 µg/ml applied on both cell lines interacted with the cells and the cells fluoresced under a fluorescence microscope in vitro. In the light of the findings obtained from this study, the potential use of boron nitride nanoparticles labeled with rhodamine 123 fluorescent dye in bioimaging applications has been revealed.

References

  • [1] Apostolova, N., Rovira-Llopis, S., Baldoví, H.G., Navalon, S., Asiri, A.M., Victor, V.M., Garcia, H., Herance, J.R. 2015. Ceria nanoparticles with rhodamine B as a powerful theranostic agent against intracellular oxidative stress, RSC Advances, Cilt. 5(97), s. 79423–79432. DOI:https://doi.org/10.1039/c5ra12794g
  • [2] Aydin, H. 2018. Nanoyapılı Hegzagonal Bor Nitrür Üretimi ve Karakterizasyonu, Fırat Üniversitesi Mühendislik Bilimleri Dergisi, Cilt. 30(2), s. 269–275. DOI:https://dergipark.org.tr/en/pub/fumbd/issue/39197/461582
  • [3] Chessel, A. 2017. An Overview of data science uses in bioimage informatics, Methods, Cilt. 115, s. 110–118. DOI:https://doi.org/10.1016/j.ymeth.2016.12.014
  • [4] Etimaden - TÜRKİYE’DE BOR. http://www.etimaden.gov.tr/turkiyede-bor (Erişim Tarihi 29.07.2020)
  • [5] Forster, S., Thumser, A.E., Hood, S.R., Plant, N. 2012. Characterization of rhodamine-123 as a tracer dye for use in in vitro drug transport assays, PLoS ONE, Cilt. 7(3), e33253. DOI:https://doi.org/10.1371/journal.pone.0033253
  • [6] Kainthola, A., Bijalwan, K., Negi, S., Sharma, H., Dwivedi, C. 2020. Hydrothermal synthesis of highly stable boron nitride nanoparticles, Materials Today: Proceedings, Cilt. 28, s. 138–140. DOI:https://doi.org/10.1016/j.matpr.2020.01.452
  • [7] Kumar, V., Lahiri, D., Lahiri, I. 2018. Synthesis of Boron Nitride Nanotubes and Boron Nitride Nanoflakes with Potential Application in Bioimaging, Materials Today: Proceedings, Cilt. 5(8), s. 16756–16762. DOI:https://doi.org/10.1016/j.matpr.2018.06.037
  • [8] Pamukcu, A., Portakal, H.S., Eroglu, E. 2018. Terapötik Moleküllerin Aktariminda Kullanilan Yeni Nesil Biyomalzemeler, Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi, Cilt. 11(3), s. 524-542. DOI: 10.18185/erzifbed.339405.
  • [9] Kutova, O.M., Guryev, E.L., Sokolova, E.A., Alzeibak, R., Balalaeva, I.V. 2019. Targeted Delivery to Tumors: Multidirectional Strategies to Improve Treatment Efficiency, Cancers, Cilt. 11(1), s. 68. DOI: https://doi.org/10.3390/cancers11010068
  • [10] Raj, S., Khurana, S., Choudhari, R., Kesari, K.K., Kamal, M.A., Garg, N., Ruokolainen, J., Das, B.C., Kumar, D. 2019. Specific targeting cancer cells with nanoparticles and drug delivery in cancer therapy, Seminars in Cancer Biology, DOI:https://doi.org/https://doi.org/10.1016/j.semcancer.2019.11.002
  • [11] Eroglu, E., Portakal, H.S., Pamukcu, A. 2020. A New Generation Nanotherapeutic: pHEMA-Chitosan Nanocomposites in siRNA Delivery, Current Nanoscience, 16. DOI:10.2174/1573413716666200110093715.
  • [12] Eroglu, E., Tiwari, P.M., Waffo, A.B., Miller, M.E., Vig, K., Dennis, V.A., Singh, S.R. 2013. A nonviral pHEMA+chitosan nanosphere-mediated high-efficiency gene delivery system, International journal of nanomedicine, Cilt. 8, s. 1403–1415. DOI:https://doi.org/10.2147/IJN.S43168
  • [13] Malik, N., Arfin, T., Khan, A.U. 2019. Chapter 13 - Graphene nanomaterials: chemistry and pharmaceutical perspectives. ss. 373–402. Malik, N., Arfin, T., Khan, A.U. ed. 2019. Nanomaterials for Drug Delivery and Therapy, Elsevier, 551s. DOI:https://doi.org/https://doi.org/10.1016/B978-0-12-816505-8.00002-3
  • [14] Han, W., Ma, Z., Liu, S., Ge, C., Wang, L., Zhang, X. 2017. Highly-dispersible boron nitride nanoparticles by spray drying and pyrolysis, Ceramics International, Cilt. 43(13), s. 10192–10200. DOI:https://doi.org/10.1016/j.ceramint.2017.05.045
  • [15] Pandey, S., Bodas, D. 2020. High-quality quantum dots for multiplexed bioimaging: A critical review, Advances in Colloid and Interface Science, Cilt. 278, s. 102137. DOI:https://doi.org/10.1016/j.cis.2020.102137
  • [16] Qi, J., Hu, X., Dong, X., Lu, Y., Lu, H., Zhao, W., Wu, W. 2019. Towards more accurate bioimaging of drug nanocarriers: turning aggregation-caused quenching into a useful tool, Advanced Drug Delivery Reviews, Cilt. 143, s. 206–225. DOI:https://doi.org/10.1016/j.addr.2019.05.009
  • [17] Shen, Q., Wang, S., Yang, N. Di, Zhang, C., Wu, Q., Yu, C. 2020. Recent development of small-molecule organic fluorophores for multifunctional bioimaging in the second near-infrared window, Journal of Luminescence, Cilt. 225, s. 117338. DOI:https://doi.org/10.1016/j.jlumin.2020.117338
  • [18] Sukhorukova, I.V, Zhitnyak, I.Y., Kovalskii, A.M., Matveev, A.T., Lebedev, O.I., Li, X., Gloushankova, N.A., Golberg, D., Shtansky, D.V. 2015. Boron Nitride Nanoparticles with a Petal-Like Surface as Anticancer Drug-Delivery Systems, ACS Applied Materials & Interfaces, Cilt. 7(31), s. 17217–17225. DOI:https://doi.org/10.1021/acsami.5b04101
  • [19] Zalba, S., Ten Hagen, T.L. 2017. Cell membrane modulation as adjuvant in cancer therapy, Cancer treatment reviews, Cilt. 52, s. 48–57. DOI:https://doi.org/10.1016/j.ctrv.2016.10.008
  • [20] Chithrani, B.D.; Chan, W.C.W. 2007. Elucidating the Mechanism of Cellular Uptake and Removal of Protein-coated Gold Nanoparticles of Different Sizes and Shapes, Nano Letters, Cilt. 7, s. 1542-1550. DOI:10.1021/nl070363y.
  • [21] Chithrani, B.D.; Ghazani, A.A.; Chan, W.C.W. 2006. Determining the Size and Shape Dependence of Gold Nanoparticle Uptake into Mammalian Cells, Nano Letters, Cilt. 6, s. 662-668. DOI:10.1021/nl052396o.
  • [22] Ciofani, G., Danti, S., Genchi, G.G., Mazzolai, B. Mattoli, V. 2013. Boron Nitride Nanotubes: Biocompatibility and Potential Spill‐Over in Nanomedicine, Small, Cilt. 9, s. 1672-1685. DOI:10.1002/smll.201201315
  • [23] Horváth, L., Magrez, A., Golberg, D., Zhi, C., Bando, Y., Smajda, R., Horvath, E., Forró, L., Schwaller, B. 2011. In Vitro Investigation of the Cellular Toxicity of Boron Nitride Nanotubes, ACS NANO, Cilt. 5, s. 3800-3810. DOI:10.1021/nn200139h.
  • [24] Rasel, A., Li, T., Nguyen, D., Singh, S., Zhou, Y., Xiao, Y., Gu, Y.T. 2015. Biophysical response of living cells to boron nitride nanoparticles: uptake mechanism and bio-mechanical characterization. Journal of Nanoparticle Research, Cilt. 17(11), s. 441. DOI:10.1007/s11051-015-3248-2.
There are 24 citations in total.

Details

Primary Language Turkish
Journal Section Research Article
Authors

Erdal Eroğlu 0000-0001-7281-3906

Publication Date May 24, 2021
Published in Issue Year 2021 Volume: 23 Issue: 68

Cite

APA Eroğlu, E. (2021). Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu ve in vitro Biyogörüntüleme Potansiyelinin Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(68), 595-605. https://doi.org/10.21205/deufmd.2021236821
AMA Eroğlu E. Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu ve in vitro Biyogörüntüleme Potansiyelinin Araştırılması. DEUFMD. May 2021;23(68):595-605. doi:10.21205/deufmd.2021236821
Chicago Eroğlu, Erdal. “Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu Ve in Vitro Biyogörüntüleme Potansiyelinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 68 (May 2021): 595-605. https://doi.org/10.21205/deufmd.2021236821.
EndNote Eroğlu E (May 1, 2021) Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu ve in vitro Biyogörüntüleme Potansiyelinin Araştırılması. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 68 595–605.
IEEE E. Eroğlu, “Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu ve in vitro Biyogörüntüleme Potansiyelinin Araştırılması”, DEUFMD, vol. 23, no. 68, pp. 595–605, 2021, doi: 10.21205/deufmd.2021236821.
ISNAD Eroğlu, Erdal. “Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu Ve in Vitro Biyogörüntüleme Potansiyelinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/68 (May 2021), 595-605. https://doi.org/10.21205/deufmd.2021236821.
JAMA Eroğlu E. Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu ve in vitro Biyogörüntüleme Potansiyelinin Araştırılması. DEUFMD. 2021;23:595–605.
MLA Eroğlu, Erdal. “Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu Ve in Vitro Biyogörüntüleme Potansiyelinin Araştırılması”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 68, 2021, pp. 595-0, doi:10.21205/deufmd.2021236821.
Vancouver Eroğlu E. Rodamin 123 Etiketli Bor Nitrür Nanoparçacıklarının Karakterizasyonu ve in vitro Biyogörüntüleme Potansiyelinin Araştırılması. DEUFMD. 2021;23(68):595-60.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.