Research Article
BibTex RIS Cite

Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi

Year 2021, Volume: 23 Issue: 69, 767 - 779, 15.09.2021
https://doi.org/10.21205/deufmd.2021236906

Abstract

Deprem yalıtım teknolojisi yer hareketi ile yapısal sistem arasında bir ayrışım yaratarak depremlerin yıkıcı etkilerini azaltmak amacı ile kullanılan yenilikçi bir tasarım ve güçlendirme yöntemidir. Bu çalışma ¼ ölçekli üç katlı simetrik ve eşmerkezli çelik yapının korunması için önerilen karma yalıtım sistemlerinin sarsma masası deneyleri ile etkinliğinin araştırılması üzerine odaklanmaktadır. Kullanılan pasif yalıtım sistemi, yüksek sönümlü elastomer ve düz yüzeyli sürtünme tipi kayıcı yalıtım birimlerinden oluşmaktadır. Deney programında kullanılan yer hareketi kademeli olarak arttırılarak, yalıtım sisteminde ortaya çıkabilecek davranış farkları araştırılmıştır. Deprem kaydının %100 etkitildiği durumda daha yüksek kayma modülüne sahip olan elastomer birimlerden oluşan yalıtım sisteminin daha düşük kayma modulüne sahip olan deprem yalıtım sistemine oranla taban kesme kuvveti açısından beklenildiği gibi daha yüksek değerler verdiği gözlenmiştir.

Thanks

Bu çalışmanın hazırlanmasında değerli katkılarından dolayı Dr. Yavuz Kaya, Doç. Dr. Eren Uçkan’a, yalıtım cihazlarının tedariğinde yardımlarından dolayı FIP Industrial firmasına, FIP Türkiye Sorumlusu Yüksek Mühendis Mircan Kaya ve FIP Firmasında teknik ofis mühendisi ve araştırmacılarından Dr. Gabriella Castellano’ya desteklerinden dolayı teşekkür ederim.

References

  • Hancilar, U., Tuzun, C., Yenidogan, C., and Erdik, M. 2010. ELER software – a new tool for urban earthquake loss assessment, Natural Hazards Earth System. Sci., 10, 2677-2696, doi: 10.5194 /nhess-10-2677-2010
  • Erdik, M., Sesetyan, K., Demircioglu, M.B., Hancilar, U., Zulfikar, C., Durukal, E., Kamer, Y., Yenidogan, C., Tuzun, C., Cagnan, Z., Harmandar, E. 2010. Rapid Earthquake Hazard and Loss Assessment for Euro-Mediterranean Region, Acta Geophysica, vol.58, no.5, pp: 855 -892
  • Multi-hazard Loss Estimation Methodology Earthquake Model Hazus MHMR4 Technical Manual, Department of Homeland Security Emergency Preparedness and Response Directorate FEMA Mitigation Division, 2003.
  • Di Sarno, L., Yenidogan, C., Erdik, M. 2013. Field evidence and numerical investigation of the Mw = 7.1 October 23 Van, Tabanlı and the MW > 5.7 November earthquakes of 2011, Bulletin of Earthquake Engineering, 11:313–346. DOI: 10.1007/s10518-012-9417-0
  • Kani N. Current 2009. State of Seismic Isolation Design, Journal of Disaster Research; 4(4):175–181.
  • Türkiye Bina Deprem Yönetmeliği, TC İçişleri Bakanlığı AFAD Afet ve Acil Durum Yönetimi Başkanlığı, Resmi Gazete No.: 30364, 2018
  • Yenidogan, C., Yokoyama, R., Nagae, T., Tahara, K., Tosauchi, Y., Kajiwara, K., Ghannoum, W. 2018. Shake table test of a full-scale four-story reinforced concrete structure and numerical representation of overall response with modified IMK model, Springer, Bulletin of Earthquake Engineering, Cilt 16 s. 2087–2118. DOI: 10.1007/s10518-017-0261-0
  • Nagae, T., Uwadan, S., Yenidogan, C., Yamada, S., Kashiwa, H., Hayashi, K., Takahashi, T., Inoue,T., 2021. The 2019 full-scale shake table test program of wood dwellings, 17th World Conference on Earthquake Engineering, 17WCEE, September 27 to October 2, Paper No. C002274.
  • Yenidogan, C., Takahashi, T., Nagae, T., Inoue, T. 2021. Seismic Performance Evaluation of a Base Isolated P&B Structure Through Full-Scale Shake Table Tests, 17th World Conference on Earthquake Engineering, 17WCEE, September 27 to October 2, Paper No. C002274.
  • Yenidogan, C., Nishi, R., Nagae, T., Koichi Kajiwara, 2020. Full-scale cyclic test of a Japanese post and beam wood shearwall assembly, Bull Earthquake Eng Cilt 18, 4985–5008.
  • Yenidogan C., Nishi,R., Uwadan, S., Nagae, T., Isoda,H., Tsuchimoto,T., Inoue,T., Kajiwara, K.2021.Full-scale shake table tests of P&B type of Japanese three-story wood dwellings for the collapse characterization, Soil Dynamics and Earthquake Engineering, Vol. 150, 1-22. DOI: 10.1016/j.soildyn.2021.106898
  • Aydin E.R., Ozturk B., Kilinc O.F. Seismic Response of Low-Rise Base Isolated Structures. In15th World Conference on Earthquake Engineering, Portugal 2012 Vol. 24, pp. 19493-19502
  • Kelly JM. 1997. Earthquake-Resistant Design with Rubber. Springer-Verlag London Limited, 243s.
  • Naiem, F. and J.M. Kelly, 1999. Design of Seismic Isolated Structures. Wiley; HAR/CDR Edition John Wiley & Sons, New York, 304s.
  • Skinner, R.I., W.H. Robinson, and G.H. McVerry, 1993. An Introduction to Seismic Isolation, John Wiley& Sons, New York, 354s.
  • Xuan, D., Pavel, C., Wang, SJ, Medel, RA, Smirnov, V., Yenidogan, C., Forni, M., Aiken, I. 2016. Recent Information on Seismically Isolated Buildings in the World, Journal of Japanese Society of Seismic Isolation “MENSHIN”, May, 2016.
  • Yenidogan, C., Erdik, M. 2014. The State of Art in Seismic Isolation and Energy Dissipation Applications in Turkey, The Japan Society of Seismic Isolation, Menshin Cilt 83, 49-59, 2014-02.
  • Yenidogan, C. 2021. Earthquake-Resilient Design of Seismically Isolated Buildings: A Review of Technology, Vibration, Cilt 4, no. 3, s. 602-647. DOI: 10.3390/vibration4030035
  • Türkiye Sağlık Bakanlığı, Deprem Yalıtımlı olarak İnşa Edilecek Yapılara Ait Proje ve Yapım İşlerinde Uyulması Gereken Asgari Standartlar, 2013.
  • Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik,Resmi Gazete No.: 26454, 2007
  • CSI SAP2000V22. Analysis Reference Manual. CSI: Berkeley (CA, USA): Computers and Structures Inc. 2020.
  • Mazzoni S, McKenna F, Scott MH, Fenves GL. OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center. 2006 Jul 19;264.
  • Basu, B..,Bursi, O. S.,Casciati, F.,Casciati, S.,Del Grosso, A. E.,Domaneschi, M.,Faravelli, L.Holnicki‐Szulc, J.,Irschik, H.,Krommer, M.,Lepidi, M.,Martelli, A.,Ozturk, B.,Pozo, F.,Pujol, G.,Rakicevic, Z. and Rodellar, J.(2014),A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe,Struct. Control Health Monit.,21:1414–1436. DOI:10.1002/stc.1652
  • Yenidogan, C and Mustafa E. 2016. A comparative evaluation of design provisions for seismically isolated buildings, Soil Dynamics and Earthquake Engineering, Cilt 90, s. 265-286. DOI: 10.1016/j.soildyn.2016.08.016
  • Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, 2000, Prepared by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C. pp. 100-400.
  • Minimum Design Loads and Associated Criteria for Buildings and Other Structures ASCE/SEI 7 16, American Society of Civil Engineers, 2017.
  • CEN, Eurocode 8: design of structures for earthquake Resistance—Part 1: general rules, seismic actions and rules for buildings. EN 1998–1:2004. Comité Européen de Normalisation, Brussels, 2004.
  • Japanese Ministry of Land, Infrastructure and Transport, Notification No. 2009–2000, Technical Standard for Structural Specifications and Calculation of Seismically Isolated Buildings. (in Japanese). 2000.
  • Constantinou, M.C., Tsopelas, P., Kasalanati, A., and Wolff, E.D. 1999. Property modification factors for seismic isolation bearings. Report MCEER-99-0012, Multidisciplinary Center for Earthquake Engineering Research, State University of New York.
  • Tsopelas, P.C., Constantinou, M.C. and Reinhorn, A.M., 1994. 3D-BASIS-ME: Computer program for nonlinear dynamic analysis of seismically isolated single and multiple structures and liquid storage tanks.

Experimental Performance Evaluation of Hybrid Isolation Systems

Year 2021, Volume: 23 Issue: 69, 767 - 779, 15.09.2021
https://doi.org/10.21205/deufmd.2021236906

Abstract

The seismic isolation technology is an innovative design/retrofit method. It decouples the structural response from the ground motion to reduce floor accelerations while concentrating most of the deformation demands at the isolation interface. The main objective of this research study is to investigate the effectiveness of passive-hybrid isolation systems for a ¼ scaled mass concentric three-story steel structure. The passive-hybrid isolation system is a combination of HDRB and PTFE sliding bearings. The ground motion used in the shake table tests is gradually increased to investigate changes in the dynamic response characteristics of the hybrid isolation system. It has been observed that the isolation system consisting of elastomer units with larger shear modulus subjected to higher base shear with displacement demands than the system with the lower shear modulus.

References

  • Hancilar, U., Tuzun, C., Yenidogan, C., and Erdik, M. 2010. ELER software – a new tool for urban earthquake loss assessment, Natural Hazards Earth System. Sci., 10, 2677-2696, doi: 10.5194 /nhess-10-2677-2010
  • Erdik, M., Sesetyan, K., Demircioglu, M.B., Hancilar, U., Zulfikar, C., Durukal, E., Kamer, Y., Yenidogan, C., Tuzun, C., Cagnan, Z., Harmandar, E. 2010. Rapid Earthquake Hazard and Loss Assessment for Euro-Mediterranean Region, Acta Geophysica, vol.58, no.5, pp: 855 -892
  • Multi-hazard Loss Estimation Methodology Earthquake Model Hazus MHMR4 Technical Manual, Department of Homeland Security Emergency Preparedness and Response Directorate FEMA Mitigation Division, 2003.
  • Di Sarno, L., Yenidogan, C., Erdik, M. 2013. Field evidence and numerical investigation of the Mw = 7.1 October 23 Van, Tabanlı and the MW > 5.7 November earthquakes of 2011, Bulletin of Earthquake Engineering, 11:313–346. DOI: 10.1007/s10518-012-9417-0
  • Kani N. Current 2009. State of Seismic Isolation Design, Journal of Disaster Research; 4(4):175–181.
  • Türkiye Bina Deprem Yönetmeliği, TC İçişleri Bakanlığı AFAD Afet ve Acil Durum Yönetimi Başkanlığı, Resmi Gazete No.: 30364, 2018
  • Yenidogan, C., Yokoyama, R., Nagae, T., Tahara, K., Tosauchi, Y., Kajiwara, K., Ghannoum, W. 2018. Shake table test of a full-scale four-story reinforced concrete structure and numerical representation of overall response with modified IMK model, Springer, Bulletin of Earthquake Engineering, Cilt 16 s. 2087–2118. DOI: 10.1007/s10518-017-0261-0
  • Nagae, T., Uwadan, S., Yenidogan, C., Yamada, S., Kashiwa, H., Hayashi, K., Takahashi, T., Inoue,T., 2021. The 2019 full-scale shake table test program of wood dwellings, 17th World Conference on Earthquake Engineering, 17WCEE, September 27 to October 2, Paper No. C002274.
  • Yenidogan, C., Takahashi, T., Nagae, T., Inoue, T. 2021. Seismic Performance Evaluation of a Base Isolated P&B Structure Through Full-Scale Shake Table Tests, 17th World Conference on Earthquake Engineering, 17WCEE, September 27 to October 2, Paper No. C002274.
  • Yenidogan, C., Nishi, R., Nagae, T., Koichi Kajiwara, 2020. Full-scale cyclic test of a Japanese post and beam wood shearwall assembly, Bull Earthquake Eng Cilt 18, 4985–5008.
  • Yenidogan C., Nishi,R., Uwadan, S., Nagae, T., Isoda,H., Tsuchimoto,T., Inoue,T., Kajiwara, K.2021.Full-scale shake table tests of P&B type of Japanese three-story wood dwellings for the collapse characterization, Soil Dynamics and Earthquake Engineering, Vol. 150, 1-22. DOI: 10.1016/j.soildyn.2021.106898
  • Aydin E.R., Ozturk B., Kilinc O.F. Seismic Response of Low-Rise Base Isolated Structures. In15th World Conference on Earthquake Engineering, Portugal 2012 Vol. 24, pp. 19493-19502
  • Kelly JM. 1997. Earthquake-Resistant Design with Rubber. Springer-Verlag London Limited, 243s.
  • Naiem, F. and J.M. Kelly, 1999. Design of Seismic Isolated Structures. Wiley; HAR/CDR Edition John Wiley & Sons, New York, 304s.
  • Skinner, R.I., W.H. Robinson, and G.H. McVerry, 1993. An Introduction to Seismic Isolation, John Wiley& Sons, New York, 354s.
  • Xuan, D., Pavel, C., Wang, SJ, Medel, RA, Smirnov, V., Yenidogan, C., Forni, M., Aiken, I. 2016. Recent Information on Seismically Isolated Buildings in the World, Journal of Japanese Society of Seismic Isolation “MENSHIN”, May, 2016.
  • Yenidogan, C., Erdik, M. 2014. The State of Art in Seismic Isolation and Energy Dissipation Applications in Turkey, The Japan Society of Seismic Isolation, Menshin Cilt 83, 49-59, 2014-02.
  • Yenidogan, C. 2021. Earthquake-Resilient Design of Seismically Isolated Buildings: A Review of Technology, Vibration, Cilt 4, no. 3, s. 602-647. DOI: 10.3390/vibration4030035
  • Türkiye Sağlık Bakanlığı, Deprem Yalıtımlı olarak İnşa Edilecek Yapılara Ait Proje ve Yapım İşlerinde Uyulması Gereken Asgari Standartlar, 2013.
  • Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik,Resmi Gazete No.: 26454, 2007
  • CSI SAP2000V22. Analysis Reference Manual. CSI: Berkeley (CA, USA): Computers and Structures Inc. 2020.
  • Mazzoni S, McKenna F, Scott MH, Fenves GL. OpenSees command language manual. Pacific Earthquake Engineering Research (PEER) Center. 2006 Jul 19;264.
  • Basu, B..,Bursi, O. S.,Casciati, F.,Casciati, S.,Del Grosso, A. E.,Domaneschi, M.,Faravelli, L.Holnicki‐Szulc, J.,Irschik, H.,Krommer, M.,Lepidi, M.,Martelli, A.,Ozturk, B.,Pozo, F.,Pujol, G.,Rakicevic, Z. and Rodellar, J.(2014),A European Association for the Control of Structures joint perspective. Recent studies in civil structural control across Europe,Struct. Control Health Monit.,21:1414–1436. DOI:10.1002/stc.1652
  • Yenidogan, C and Mustafa E. 2016. A comparative evaluation of design provisions for seismically isolated buildings, Soil Dynamics and Earthquake Engineering, Cilt 90, s. 265-286. DOI: 10.1016/j.soildyn.2016.08.016
  • Prestandard and Commentary for the Seismic Rehabilitation of Buildings, FEMA 356, 2000, Prepared by the American Society of Civil Engineers for the Federal Emergency Management Agency, Washington, D.C. pp. 100-400.
  • Minimum Design Loads and Associated Criteria for Buildings and Other Structures ASCE/SEI 7 16, American Society of Civil Engineers, 2017.
  • CEN, Eurocode 8: design of structures for earthquake Resistance—Part 1: general rules, seismic actions and rules for buildings. EN 1998–1:2004. Comité Européen de Normalisation, Brussels, 2004.
  • Japanese Ministry of Land, Infrastructure and Transport, Notification No. 2009–2000, Technical Standard for Structural Specifications and Calculation of Seismically Isolated Buildings. (in Japanese). 2000.
  • Constantinou, M.C., Tsopelas, P., Kasalanati, A., and Wolff, E.D. 1999. Property modification factors for seismic isolation bearings. Report MCEER-99-0012, Multidisciplinary Center for Earthquake Engineering Research, State University of New York.
  • Tsopelas, P.C., Constantinou, M.C. and Reinhorn, A.M., 1994. 3D-BASIS-ME: Computer program for nonlinear dynamic analysis of seismically isolated single and multiple structures and liquid storage tanks.
There are 30 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Cem Yenidogan 0000-0003-0219-6302

Publication Date September 15, 2021
Published in Issue Year 2021 Volume: 23 Issue: 69

Cite

APA Yenidogan, C. (2021). Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 23(69), 767-779. https://doi.org/10.21205/deufmd.2021236906
AMA Yenidogan C. Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi. DEUFMD. September 2021;23(69):767-779. doi:10.21205/deufmd.2021236906
Chicago Yenidogan, Cem. “Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 23, no. 69 (September 2021): 767-79. https://doi.org/10.21205/deufmd.2021236906.
EndNote Yenidogan C (September 1, 2021) Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23 69 767–779.
IEEE C. Yenidogan, “Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi”, DEUFMD, vol. 23, no. 69, pp. 767–779, 2021, doi: 10.21205/deufmd.2021236906.
ISNAD Yenidogan, Cem. “Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 23/69 (September 2021), 767-779. https://doi.org/10.21205/deufmd.2021236906.
JAMA Yenidogan C. Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi. DEUFMD. 2021;23:767–779.
MLA Yenidogan, Cem. “Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 23, no. 69, 2021, pp. 767-79, doi:10.21205/deufmd.2021236906.
Vancouver Yenidogan C. Karma Deprem Yalıtım Sistemlerinin Deneysel Performans Değerlendirmesi. DEUFMD. 2021;23(69):767-79.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.