Eklemeli İmalat İle Üretilen Esnek Flap Mekanizmasının Tasarımı Ve Yorulma Testi
Year 2021,
Volume: 23 Issue: 69, 951 - 960, 15.09.2021
Salih Kaya
,
Tuğberk Güngördü
,
Mert Ali Özel
Abstract
Bu çalışmada İnsansız Hava Aracına (İHA) ait esnek flap mekanizması tasarlanmış ve model İHA için üretilmiştir. Bu sayede, parça sayısında azalma ve mafsal kullanılmaması sebebiyle mafsallar içerisindeki iç sürtünmeler gibi problemler giderilmiştir. Mekanizmanın çalışma koşullarındaki davranışlarının hesaplanması için bu çalışmada eşlenik rijit cisim metodu yardımıyla doğrusal bir model geliştirilmiştir. Geliştirilen esnek mekanizma, geleneksel mekanizmaya göre motordan talep ettiği toplam tork değerinin yaklaşık üç kat arttığı görülmüştür. Eklemeli imalat yöntemiyle Semiflex plastik malzemeden üretilen bu mekanizmanın yorulma analiz davranışlarının gözlemlenmesi için test düzeneği tasarlanmış ve 717727 çevrime kadar hasar meydana gelmeden çalışmıştır. Yapılan çalışma literatürde eksik olan, eklemeli imalat ile Semiflex plastik malzemeden üretilmiş esnek flap mekanizmasının kinetik ve yorulma performansları hakkında bilgiler sunarak yeni çalışmalara referans olacağı düşünülmektedir.
Supporting Institution
TUBİTAK
Project Number
1919B011901645
Thanks
Bu proje, TÜBİTAK 2209-A desteği kapsamında gerçekleştirilmiştir. Desteklerinden ötürü TÜBİTAK kurumuna teşekkürlerimizi sunmaktayız.
References
- [1] Çalık, B., 2014. Esnek Uzaysal Mekanizmaların Tasarımı ve Sonlu Elemanlar Yöntemi ile Analizi. Hacettepe Üniversitesi. Fen Bilimleri Enstitüsü. 162s. Ankara.
- [2] Howell, L. L. 2013. Handbook of Compliant Mechanism. Wiley. 342s.
- [3] Howell, L. L., Mitha, A. 1994. A Method for the Design of Compliant Mechanisms with Small-Length Flexural Pivot. Journal of Mechanical Design. 116(1): 280-290 (11 pages) DOI: 10.1115/1.2919359
- [4] Anonim. 2020. https://app.patentinspiration.com/#report/4152eea21734/filter. (Erişim Tarihi: 14.11.2020)
- [5] J.P. Khatait, S. Mukherjee , B. Seth. 2006. Compliant design for flapping mechanism: A Minimum torque approach. Mechanism and Machine Theory. Volume 41 Issue 1. Pages 3-16. DOI: 10.1016/j.mechmachtheory.2005.06.002
- [6] Kota S., Osborn R., Ervin G. Maric D. 2009. Mission Adaptive Compliant Wing – Design, Fabrication and Flight Test. RTO The Applied Vehicle Technology Panel (AVT) and the Systems. 1-20. DOI: RTO-MP-AVT168
- [7] Nelson T.G., Avila A., Howell L.L., Herder J.L., Machekposhti D.F. 2019. Origami- inspired Sacrificial -Joints for Folding Compliant Mechanisms. Mechanism and Machine Theory. Volume 140. 194-210. DOI: 10.1016/j.mechmachtheory.2019.05.023
- [8] Erkaya Ş., Uzmay İ. 2014. Modeling and Simulation of Joint Celarance Effects on Mechanisms Having Rigid and Flexible Links. Journal of Mechaniscal Science and Technology. 28 (8) 2979-2986. DOI: 10.1007/s12206-014-0705-2
- [9] Gerdes J.W., Cellon K.C., Bruck H.A., Gupta S.K. 2013. Characterization of the Mechanics of Compliant Wing Designs for Flapping-Wing Miniature Air Vehicles. Experimental Mechanics. 53, pages1561–1571. DOI: 10.1007/s11340-013-9779-5
- [10] Erkaya Ş., Ulus Ş., Doğan S. 2015. Klasik ve Esnek Bağlantılı Mekanizmalarda Eklem Boşluğu Etkisinin Nümerik ve Deneysel İncelenmesi. Selçuk Universitesi. Fen Bilimleri Enstitüsü. 342s.
- [11] Ding Y., Lai Lei-Jie. 2019. Static and Dynamic Analysis of Flexure based Compliant Mechanism by Matrix Displacement Method. 2019 IEEE 5th International Conference on Mechatronics System and Robots (ICMSR). DOI: 10.1109/ICMSR.2019.8835474.
- [12] Yue -Qing Y., Zhang N. 2019. Dynamic Modeling and Performance of Compliant Mechanisms -with Inflection Beams. Mechanism and Machine Theory. Volume 135. 455-475. DOI: 10.1016/j.mechmachtheory.2019.01.010
- [13] Shili L., Wenjie G., Shujun L. 2008. Optimal Design of Compliant Trailing Edge for Shape Changing. Chinese Jornal of Auronautics. 21-2. 187-192. DOI: 10.1016/S1000-9361(08)60024-2
- [14] Cai G., Lum K., Chen B., Lee T. 2010. A Brief Overview on Miniature Fixed-Wing Unmanned Aerial Vehicles. 2010 8th IEEE International Conference on Control and Automation Xiamen, China, June 9-11, 2010. DOI: 10.1109/ICCA.2010.5524453
- [15] Dessalegn A., Yihun Y., Fernandes J., Lankarani H.. 2016. Effect of Variation of Link Lengths and Stiffness on the Gearing Ratio of a Four Bar Mechanism with Application to Aircraft Trim Tabs. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. DOI: 10.1115/DETC2015-46054
- [16] F. Freudenstein, 1954. An analytical approach to the design of four-link mechanism, Trans. ASME 76 483–492.
- [17] Tanikella N.G., Wittbrodt B.,Pearce J.M.. 2017. Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Additive Manufacturing Volume 15, May 2017, Pages 40-47. DOI: 10.1016/j.addma.2017.03.005
Design and Fatigue Test of Additive Manufactured Compliant Flap Mechanism
Year 2021,
Volume: 23 Issue: 69, 951 - 960, 15.09.2021
Salih Kaya
,
Tuğberk Güngördü
,
Mert Ali Özel
Abstract
In this study, the compliant four-bar flap mechanism was developed for the Unmanned Aerial Vehicle (UAV). Therefore, several problems have been avoided such as a decrease in the number of parts and eliminated internal friction in the joints problems. A linear model was developed with the help of the pseudo rigid body method to calculate the behavior of the mechanism under operating conditions. The kinetic performance of the compliant four-bar mechanism was compared with the conventional four-bar mechanism. It was observed that the total torque demand of the compliant flap mechanism increased. The test setup was designed to observe the fatigue analysis behavior of this mechanism which produced by the additive manufacturing method. Consequently, the compliant mechanism was reached the 717727 operating cycles. The study is thought to be a reference to new studies by presenting information about the kinetic and fatigue performances of the compliant flap mechanism made of Semiflex plastic material.
Project Number
1919B011901645
References
- [1] Çalık, B., 2014. Esnek Uzaysal Mekanizmaların Tasarımı ve Sonlu Elemanlar Yöntemi ile Analizi. Hacettepe Üniversitesi. Fen Bilimleri Enstitüsü. 162s. Ankara.
- [2] Howell, L. L. 2013. Handbook of Compliant Mechanism. Wiley. 342s.
- [3] Howell, L. L., Mitha, A. 1994. A Method for the Design of Compliant Mechanisms with Small-Length Flexural Pivot. Journal of Mechanical Design. 116(1): 280-290 (11 pages) DOI: 10.1115/1.2919359
- [4] Anonim. 2020. https://app.patentinspiration.com/#report/4152eea21734/filter. (Erişim Tarihi: 14.11.2020)
- [5] J.P. Khatait, S. Mukherjee , B. Seth. 2006. Compliant design for flapping mechanism: A Minimum torque approach. Mechanism and Machine Theory. Volume 41 Issue 1. Pages 3-16. DOI: 10.1016/j.mechmachtheory.2005.06.002
- [6] Kota S., Osborn R., Ervin G. Maric D. 2009. Mission Adaptive Compliant Wing – Design, Fabrication and Flight Test. RTO The Applied Vehicle Technology Panel (AVT) and the Systems. 1-20. DOI: RTO-MP-AVT168
- [7] Nelson T.G., Avila A., Howell L.L., Herder J.L., Machekposhti D.F. 2019. Origami- inspired Sacrificial -Joints for Folding Compliant Mechanisms. Mechanism and Machine Theory. Volume 140. 194-210. DOI: 10.1016/j.mechmachtheory.2019.05.023
- [8] Erkaya Ş., Uzmay İ. 2014. Modeling and Simulation of Joint Celarance Effects on Mechanisms Having Rigid and Flexible Links. Journal of Mechaniscal Science and Technology. 28 (8) 2979-2986. DOI: 10.1007/s12206-014-0705-2
- [9] Gerdes J.W., Cellon K.C., Bruck H.A., Gupta S.K. 2013. Characterization of the Mechanics of Compliant Wing Designs for Flapping-Wing Miniature Air Vehicles. Experimental Mechanics. 53, pages1561–1571. DOI: 10.1007/s11340-013-9779-5
- [10] Erkaya Ş., Ulus Ş., Doğan S. 2015. Klasik ve Esnek Bağlantılı Mekanizmalarda Eklem Boşluğu Etkisinin Nümerik ve Deneysel İncelenmesi. Selçuk Universitesi. Fen Bilimleri Enstitüsü. 342s.
- [11] Ding Y., Lai Lei-Jie. 2019. Static and Dynamic Analysis of Flexure based Compliant Mechanism by Matrix Displacement Method. 2019 IEEE 5th International Conference on Mechatronics System and Robots (ICMSR). DOI: 10.1109/ICMSR.2019.8835474.
- [12] Yue -Qing Y., Zhang N. 2019. Dynamic Modeling and Performance of Compliant Mechanisms -with Inflection Beams. Mechanism and Machine Theory. Volume 135. 455-475. DOI: 10.1016/j.mechmachtheory.2019.01.010
- [13] Shili L., Wenjie G., Shujun L. 2008. Optimal Design of Compliant Trailing Edge for Shape Changing. Chinese Jornal of Auronautics. 21-2. 187-192. DOI: 10.1016/S1000-9361(08)60024-2
- [14] Cai G., Lum K., Chen B., Lee T. 2010. A Brief Overview on Miniature Fixed-Wing Unmanned Aerial Vehicles. 2010 8th IEEE International Conference on Control and Automation Xiamen, China, June 9-11, 2010. DOI: 10.1109/ICCA.2010.5524453
- [15] Dessalegn A., Yihun Y., Fernandes J., Lankarani H.. 2016. Effect of Variation of Link Lengths and Stiffness on the Gearing Ratio of a Four Bar Mechanism with Application to Aircraft Trim Tabs. ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. DOI: 10.1115/DETC2015-46054
- [16] F. Freudenstein, 1954. An analytical approach to the design of four-link mechanism, Trans. ASME 76 483–492.
- [17] Tanikella N.G., Wittbrodt B.,Pearce J.M.. 2017. Tensile strength of commercial polymer materials for fused filament fabrication 3D printing. Additive Manufacturing Volume 15, May 2017, Pages 40-47. DOI: 10.1016/j.addma.2017.03.005