Research Article
BibTex RIS Cite

Treatment of isoproturon with advanced oxidation proceses

Year 2022, Volume: 24 Issue: 71, 563 - 570, 16.05.2022
https://doi.org/10.21205/deufmd.2022247120

Abstract

Isoproturon is an organic chemical component and is used to control weeds in agricultural activities. Residues of isoproturone in the soil can create toxic effects for living organisms, mix with underground and surface waters and create pollution. Therefore, isoproturon can pose a significant environmental problem.
Hydroxyl radicals (OH●), which provide oxidative decomposition of organic substances, are produced by advanced oxidation processes (IOP). The aim of this study is to examine the removal of isoproturone by advanced oxidation processes such as UV/H2O2, UV/H2O2/Fe+2, UV/H2O2/NTA, UV/H2O2/Fe+2/NTA. Experiments were designed using the Box-Behnken statistical design method. By keeping the oxidant (H2O2) concentration constant in the design, the effect of catalyst (Fe+2), chelator (NTA) concentrations and reaction time changes on Isoproturon removal efficiency was investigated. Working range for independent variables; Fe+2 concentration was determined as 0-5 mg/L, NTA (nitrilotriasetik asit) concentration was 0-3 mg/L, reaction time was determined as 5-30 minutes.
The purification of isoproturone with advanced oxidation processes was achieved with an efficiency of approximately 60%, and it was observed that it did not turn into a toxic by-product as a result of the analysis. As optimum conditions; reaction time was determined as 5 minutes, Fe+2 concentration was 4 mg/L, NTA concentration was 1.5 mg/L. In this case, the optimum value of the Fe+2/NTA ratio was found to be between 2-2.5.

References

  • [1] https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:6049
  • [2] https://www.who.int/water_sanitation_health/dwq/chemicals/isoproturon.pdf
  • [3] Castillo, M., Wiren-Lehr, S., Scheunert, I., Torstensson, L.2001. Degradation of isoproturon by the white rot fungus Phanerochaete chrysosporium, Biology and Fertility of Soils, Cilt. 33, s.521-528.
  • [4] Dong, H., Zeng, G., Tang. L., Fan, C., Zhang, C., He, X., He, Y. 2015. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Research, Cilt. 79, s. 128-146.
  • [5] Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., Musarrat, J. 2011. Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance, Journal of Hazardous Materials, Cilt. 185 (2-3), s.938-944.
  • [6] Lopez, A., Mascolo G., Tiravanti G., Passino T. 1997. Degradation of herbicides (ametryn and isoproturon) during water disinfection by means of two oxidants (hypochlorite and chlorine dioxide), Water Science and Technology, Cilt. 35 (4), s. 129-136.
  • [7] M. V. P. Sharma, V. Durgakumari, M. Subrahmanyam, 2008. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems, Journal of Hazardous Materials, 160(2-3),568-575).
  • [8] Uddandarao, P., Hingnekar, T.A., Balakrishnan, R.M., Rene, E.R. 2019. Solar assisted photocatalytic degradation of organic pollutants in the presence of biogenic fluorescent ZnS nanocolloids, Chemosphere, Cilt. 234, s. 287-296.
  • [9] Prete, P., Fiorentino, A., Rizzo, L., Proto, A., Cucciniello, A. 2021. Review of aminopolycarboxylic acids–based metal complexes application to water and wastewater treatment by (photo-)Fenton process at neutral pH, Current Opinion in Green and Sustainable Chemistry, Cilt. 28, s. 100451 [10] Clariziaa, A., Russoa, D., Di Somma, I., Marottaa, R. Andreozzi, R.2017. Homogeneous photo-Fenton processes at near neutral pH: A review, Applied Catalysis B: Environmental, Cilt. 209, s. 358-371.
  • [11] Lopez, N., Cruz, A., Gimenez, J., Esplugas, S., Sans, C. 2021. Improvement of the photo-Fenton process at natural condition of pH using organic fertilizers mixtures: Potential application to agricultural reuse of wastewater, Applied Catalysis B: Environmental, Cilt. 290, s. 120066. [12] De Luca, A., Dantas, R., Esplugas, S. 2015. Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH, Applied Catalysis B: Environmental, Cilt. 179, s.372-379.
  • [13] De Luca, A., Dantas, R., Esplugas, S. 2014. Assessment of iron chelates efficiency for photo-Fenton at neutral pH, Water Research, Cilt. 61, s.232-242.
  • [14] Fernandez, A., Santos, A., Romero, A., Dominguez, C. 2021. Application of Chelating Agents to Enhance Fenton Process in Soil Remediation: A Review, Catalysts, Cilt. 11(6), s.722; https://doi.org/10.3390/catal11060722
  • [15] Mejri, A., Molina, P., Cuevas, S., Antonio, J., Pere, S. 2020. Fe3+-NTA as iron source for solar photo-Fenton at neutral pH in raceway pond reactors, Science of The Total Environment, Cilt.736, S. 139617.

Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) ile Arıtımı

Year 2022, Volume: 24 Issue: 71, 563 - 570, 16.05.2022
https://doi.org/10.21205/deufmd.2022247120

Abstract

İsoproturon organik yapılı kimyasal bir bileşen olup tarım faaliyetlerinde yabancı otları kontrol etmek amaçlı kullanılmaktadır. İsoproturonun toprakta oluşan kalıntıları, canlı organizmalar için toksik etki yaratabilme, yeraltı ve yerüstü sularına karışarak kirlilik oluşturabilmektedir. Bu nedenle isoproturon çevreye önemli bir sorun teşkil edebilmektedir.
Organik maddelerin oksidatif olarak parçalanmasını sağlayan hidroksil radikalleri (OH●), ileri oksidasyon prosesleri (İOP) tarafından üretilmektedir. Bu çalışmanın amacı isoproturonun ileri oksidasyon prosesleri olan UV/H2O2, UV/H2O2/Fe+2, UV/H2O2/NTA, UV/H2O2/Fe+2/NTA yöntemleriyle giderimini incelemektir. Deneyler Box-Behnken istatistiksel tasarım yöntemi kullanılarak tasarlanmıştır. Tasarımda oksidant (H2O2) konsantrasyonu sabit tutularak, katalizör (Fe+2), şelatlayacı (NTA) konsantrasyonları ve reaksiyon süresi değişiminin, İsoproturon giderim verimine olan etkisi incelenmiştir. Bağımsız değişkenler için çalışma aralığı; Fe+2 konsantrasyonu 0-5 mg/L, NTA (nitrilotriasetik asit) konsantrasyonu 0-3 mg/L, reaksiyon süresi 5-30 dakika olarak belirlenmiştir.
İleri oksidasyon prosesleri ile isoproturonun arıtımı yaklaşık %60 verimle gerçekleşmiş olup analizler sonucunda toksik bir yan ürüne dönüşmediği gözlemlenmiştir. Optimum koşullar olarak; reaksiyon süresi 5 dakika, Fe+2 konsantrasyonu 4 mg/L, NTA konsantrasyonu 1,5 mg/L olarak belirlenmiştir. Bu durumda Fe+2/NTA oranın optimum 2-2.5 arasında olduğu saptanmıştır.

References

  • [1] https://www.ebi.ac.uk/chebi/searchId.do?chebiId=CHEBI:6049
  • [2] https://www.who.int/water_sanitation_health/dwq/chemicals/isoproturon.pdf
  • [3] Castillo, M., Wiren-Lehr, S., Scheunert, I., Torstensson, L.2001. Degradation of isoproturon by the white rot fungus Phanerochaete chrysosporium, Biology and Fertility of Soils, Cilt. 33, s.521-528.
  • [4] Dong, H., Zeng, G., Tang. L., Fan, C., Zhang, C., He, X., He, Y. 2015. An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures, Water Research, Cilt. 79, s. 128-146.
  • [5] Dwivedi, S., Singh, B. R., Al-Khedhairy, A. A., Musarrat, J. 2011. Biodegradation of isoproturon using a novel Pseudomonas aeruginosa strain JS-11 as a multi-functional bioinoculant of environmental significance, Journal of Hazardous Materials, Cilt. 185 (2-3), s.938-944.
  • [6] Lopez, A., Mascolo G., Tiravanti G., Passino T. 1997. Degradation of herbicides (ametryn and isoproturon) during water disinfection by means of two oxidants (hypochlorite and chlorine dioxide), Water Science and Technology, Cilt. 35 (4), s. 129-136.
  • [7] M. V. P. Sharma, V. Durgakumari, M. Subrahmanyam, 2008. Solar photocatalytic degradation of isoproturon over TiO2/H-MOR composite systems, Journal of Hazardous Materials, 160(2-3),568-575).
  • [8] Uddandarao, P., Hingnekar, T.A., Balakrishnan, R.M., Rene, E.R. 2019. Solar assisted photocatalytic degradation of organic pollutants in the presence of biogenic fluorescent ZnS nanocolloids, Chemosphere, Cilt. 234, s. 287-296.
  • [9] Prete, P., Fiorentino, A., Rizzo, L., Proto, A., Cucciniello, A. 2021. Review of aminopolycarboxylic acids–based metal complexes application to water and wastewater treatment by (photo-)Fenton process at neutral pH, Current Opinion in Green and Sustainable Chemistry, Cilt. 28, s. 100451 [10] Clariziaa, A., Russoa, D., Di Somma, I., Marottaa, R. Andreozzi, R.2017. Homogeneous photo-Fenton processes at near neutral pH: A review, Applied Catalysis B: Environmental, Cilt. 209, s. 358-371.
  • [11] Lopez, N., Cruz, A., Gimenez, J., Esplugas, S., Sans, C. 2021. Improvement of the photo-Fenton process at natural condition of pH using organic fertilizers mixtures: Potential application to agricultural reuse of wastewater, Applied Catalysis B: Environmental, Cilt. 290, s. 120066. [12] De Luca, A., Dantas, R., Esplugas, S. 2015. Study of Fe(III)-NTA chelates stability for applicability in photo-Fenton at neutral pH, Applied Catalysis B: Environmental, Cilt. 179, s.372-379.
  • [13] De Luca, A., Dantas, R., Esplugas, S. 2014. Assessment of iron chelates efficiency for photo-Fenton at neutral pH, Water Research, Cilt. 61, s.232-242.
  • [14] Fernandez, A., Santos, A., Romero, A., Dominguez, C. 2021. Application of Chelating Agents to Enhance Fenton Process in Soil Remediation: A Review, Catalysts, Cilt. 11(6), s.722; https://doi.org/10.3390/catal11060722
  • [15] Mejri, A., Molina, P., Cuevas, S., Antonio, J., Pere, S. 2020. Fe3+-NTA as iron source for solar photo-Fenton at neutral pH in raceway pond reactors, Science of The Total Environment, Cilt.736, S. 139617.
There are 13 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Research Article
Authors

Ebru Çokay 0000-0001-5670-630X

Egemen Orman This is me 0000-0003-1363-5120

Early Pub Date May 10, 2022
Publication Date May 16, 2022
Published in Issue Year 2022 Volume: 24 Issue: 71

Cite

APA Çokay, E., & Orman, E. (2022). Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) ile Arıtımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(71), 563-570. https://doi.org/10.21205/deufmd.2022247120
AMA Çokay E, Orman E. Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) ile Arıtımı. DEUFMD. May 2022;24(71):563-570. doi:10.21205/deufmd.2022247120
Chicago Çokay, Ebru, and Egemen Orman. “Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) Ile Arıtımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, no. 71 (May 2022): 563-70. https://doi.org/10.21205/deufmd.2022247120.
EndNote Çokay E, Orman E (May 1, 2022) Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) ile Arıtımı. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 71 563–570.
IEEE E. Çokay and E. Orman, “Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) ile Arıtımı”, DEUFMD, vol. 24, no. 71, pp. 563–570, 2022, doi: 10.21205/deufmd.2022247120.
ISNAD Çokay, Ebru - Orman, Egemen. “Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) Ile Arıtımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/71 (May 2022), 563-570. https://doi.org/10.21205/deufmd.2022247120.
JAMA Çokay E, Orman E. Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) ile Arıtımı. DEUFMD. 2022;24:563–570.
MLA Çokay, Ebru and Egemen Orman. “Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) Ile Arıtımı”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 24, no. 71, 2022, pp. 563-70, doi:10.21205/deufmd.2022247120.
Vancouver Çokay E, Orman E. Isoproturonun İleri Oksidasyon Prosesleri (UV/H2O2, Fe+2, NTA) ile Arıtımı. DEUFMD. 2022;24(71):563-70.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.