Research Article
BibTex RIS Cite

Bilinmeyen Doğrusal Olmayan Etkilerin Etkisi Altındaki Yapılarda Kullanılan ATMD Sistemleri için Uyarlanabilir Bir Kontrolör Tasarımı

Year 2022, Volume: 24 Issue: 71, 571 - 579, 16.05.2022
https://doi.org/10.21205/deufmd.2022247121

Abstract

Aktif ayarlı kütle sönümleyici (ATMD) cihazları, çok katlı yapılarda depremlerin neden olduğu titreşimleri azaltmak için birçok uygulamada tercih edilmektedir. Literatürde ATMD sistemleri için Lyapunov tabanlı kontrolör tasarımı popüler bir araştırma konusudur. Literatürde bugüne kadar yapılan çalışmaların çoğunda bina yapıları doğrusal olarak modellenmiştir ve bu araştırmalardaki kontroller de doğrusaldır. Çok katlı yapıların doğrusal olmayan dinamikleri sadece birkaç çalışmada ele alınmıştır, ancak bu çalışmalarda çeşitli doğrusallaştırma yaklaşımlarını ile birlikte doğrusal kontrol stratejileri kullanılmıştır. Doğrusal olmayan davranış, ATMD sistemlerine sahip çok katlı binaların doğal davranışıdır. Sonuç olarak, doğrusal olmayan bir kontrolör tasarlarken doğrusal olmayan dinamikleri incelemek daha gerçekçi bir yaklaşım olarak görülmektedir. Ayrıca, kontrol sistemlerinin güvenli bir şekilde çalışabilmesini garanti etmek için kontrol tasarımı sırasında çok sayıda öngörülemeyen dış faktör dikkate alınmalıdır. Daha gerçekçi bir yaklaşım oluşturmak için çok katlı yapının lineer modeli bu çalışmada lineer olmayan belirsiz fonksiyonlar eklenerek yeniden yapılandırılmıştır. Bu çalışmada, kontrolör tasarımı sırasında yapısal parametrelerin bilinmediği varsayılmıştır. Uyarlanabilir kompanzasyon kuralları, kontrol tasarımında gerekli olan sistemin tüm sistem parametrelerinin yerini alır. Teorik olarak, Lyapunov tabanlı argümanlar, geliştirilen kontrolörün ana kontrol amacına ulaşırken yapının stabilitesini koruyabileceğini göstermek için kullanılır. Matlab-Simulink, geliştirilen kontrolörlerin performansını analiz etmek için kullanılmıştır.

References

  • Yu, W., Thenozhi, S., 2016. Active Structural Control with Stable Fuzzy PID Techniques. Springer; DOI: 10.1007/978-3-319-28025-7.
  • Aly, AM., 2014. Proposed robust tuned mass damper for response mitigation in buildings exposed to multidirectional wind. Structural Design of Tall and Special Buildings. 23(9):664–91. DOI: 10.1002/tal.1068.
  • Aly, AM., 2014. Vibration control of high-rise buildings for wind: A robust passive and active tuned mass damper. Smart Structures and Systems. 13:473–500. DOI: 10.12989/sss.2014.13.3.473.
  • Khatibinia, M., Mahmoudi, M., Eliasi, H., 2020. Optimal Sliding Mode Control for Seismic Control of Buildings Equipped With Atmd. Iran University of Science & Technology. 10(1): 1–15.
  • Kamgar, R., Samea, P., Khatibinia, M., 2018. Optimizing parameters of tuned mass damper subjected to critical earthquake. Structural Design of Tall and Special Buildings. 27(7): e1460. DOI: 10.1002/tal.1460.
  • Petrini, F., Giaralis, A., Wang, Z.. 2020. Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting. Engineering Structures. 204: 109904 DOI: 10.1016/j.engstruct.2019.109904.
  • Li, C., Cao, L., 2019. High performance active tuned mass damper inerter for structures under the ground acceleration. Earthquake and Structures. 16(2): 149–163. DOI: 10.12989/eas.2019.16.2.149.
  • Collette, C., Chesné, S., 2016. Robust hybrid mass damper. Journal of Sound and Vibration. 375: 19–27. DOI: 10.1016/j.jsv.2016.04.030.
  • Ali, SF., Ramaswamy, A., 2009. Testing and modeling of MR damper and its application to SDOF systems using integral backstepping technique. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 131(2): 1–11. DOI: 10.1115/1.3072154.
  • Bitaraf, M., Ozbulut, OE., Hurlebaus, S., Barroso, L., 2010. Application of semi-active control strategies for seismic protection of buildings with MR dampers. Engineering Structures. 32(10): 3040–3047. DOI: 10.1016/j.engstruct.2010.05.023.
  • Etedali, S., Sohrabi, MR., Tavakoli, S., 2013. Optimal PD/PID control of smart base isolated buildings equipped with piezoelectric friction dampers. Earthquake Engineering and Engineering Vibration. 12(1): 39–54.
  • Etedali, S., Zamani, AA., Tavakoli, S., A 2018. GBMO-based PIλDμ controller for vibration mitigation of seismic-excited structures. Automation in Construction. 87: 1–12. DOI: 10.1016/j.autcon.2017.12.005.
  • Ulusoy, S., Nigdeli, SM., Bekdaş, G., 2021. Novel metaheuristicbased tuning of PID controllers for seismic structures and verification of robustness. Journal of Building Engineering 33: 101647. DOI: 10.1016/j.jobe.2020.101647.
  • Zhang, Y., Li, L., Guo, Y., Zhang, X., 2018. Bidirectional wind response control of 76-story benchmark building using active mass damper with a rotating actuator. Structural Control and Health Monitoring. 25(10): e2216. DOI: 10.1002/stc.2216.
  • Huang, YJ., Kuo, TC., Chang, SH., 2008. Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 38(2): 534–539. DOI: 10.1109/TSMCB.2007.910740.
  • Guclu, R., 2006. Sliding mode and PID control of a structural system against earthquake. Mathematical and Computer Modelling 44(1–2): 210–217. DOI: 10.1016/j.mcm.2006.01.014.
  • Ouyang, Y., Shi, W., Shan, J., Spencer, BF., 2019. Backstepping adaptive control for real-time hybrid simulation including servo-hydraulic dynamics. Mechanical Systems and Signal Processing 130: 732–754.. DOI: 10.1016/j.ymssp.2019.05.042.
  • Ümütlü, R.C., Ozturk, H., Bidikli, B., 2021. A robust adaptive control design for active tuned mass damper systems of multistory buildings. JVC/Journal of Vibration and Control 27(23-24), 2765-2777. DOI: 10.1177/1077546320966236.
  • Ümütlü, R.C., Bidikli, B., Ozturk, H., 2021. A backstepping control design for ATMD systems of building structure against earthquake excitations in the presence of parametric uncertainty. Structural Control and Health Monitoring. 29(3): e2893. DOI: 10.1002/stc.2893
  • Hacioglu, Y., Yagiz, N., 2012. Adaptive backstepping control with estimation for the vibration isolation of buildings. JVC/Journal of Vibration and Control 18(13): 1996–2005. DOI: 10.1177/1077546311429052.
  • Krstic, M., Smyshlyaev, A., 2007. Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Proceedings of the IEEE Conference on Decision and Control 57(9): 225–230. DOI: 10.1109/CDC.2007.4434474.
  • Holzer, TL., Barka, AA., Carver, D., Celebi, M., Cranswick, E., Dawson, T., 2000. Implications for earthquake risk reduction in the United States from the Kocaeli, Turkey, earthquake of August 17, 1999. vol. 1193. US Government Printing Office;
  • Guclu, R., Yazici, H., 2008. Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. Journal of Sound and Vibration. 318(1–2): 36–49. DOI: 10.1016/j.jsv.2008.03.058.

An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects

Year 2022, Volume: 24 Issue: 71, 571 - 579, 16.05.2022
https://doi.org/10.21205/deufmd.2022247121

Abstract

Active tuned mass damper (ATMD) devices are favored in many applications to reduce vibrations induced by earthquakes in multi-story structures. In the literature, the Lyapunov-based controller design for ATMD systems is a popular topic of research. The building structures have been modeled linearly in the majority of studies so far in the literature. As a result, the controls in these researches are linear as well. Only a few studies have considered the nonlinear dynamics of multi-story structures, however, in these works, linear control schemes employing various linearization approaches are provided. Nonlinear behavior is the inherent behavior of multi-story buildings with ATMD systems. As a consequence, studying nonlinear dynamics while designing a nonlinear controller is regarded to be a more realistic approach. Furthermore, numerous unpredictable external factors should be considered during control design to guarantee that the control systems are able to operate securely in any environment. In order to create a more realistic approach, the linear model of the multi-story structure is reconfigured in this work by adding nonlinear ambiguous functions to it. It was assumed in this study that the structural parameters were unknown at the time of controller design. Adaptive compensation rules replace all system parameters of the system necessary in control design. Theoretically, Lyapunov-based arguments are used to show that the developed controller can keep the structure stable while attaining the main control aim. Matlab-Simulink is used to analyze the performance of the developed controllers.

References

  • Yu, W., Thenozhi, S., 2016. Active Structural Control with Stable Fuzzy PID Techniques. Springer; DOI: 10.1007/978-3-319-28025-7.
  • Aly, AM., 2014. Proposed robust tuned mass damper for response mitigation in buildings exposed to multidirectional wind. Structural Design of Tall and Special Buildings. 23(9):664–91. DOI: 10.1002/tal.1068.
  • Aly, AM., 2014. Vibration control of high-rise buildings for wind: A robust passive and active tuned mass damper. Smart Structures and Systems. 13:473–500. DOI: 10.12989/sss.2014.13.3.473.
  • Khatibinia, M., Mahmoudi, M., Eliasi, H., 2020. Optimal Sliding Mode Control for Seismic Control of Buildings Equipped With Atmd. Iran University of Science & Technology. 10(1): 1–15.
  • Kamgar, R., Samea, P., Khatibinia, M., 2018. Optimizing parameters of tuned mass damper subjected to critical earthquake. Structural Design of Tall and Special Buildings. 27(7): e1460. DOI: 10.1002/tal.1460.
  • Petrini, F., Giaralis, A., Wang, Z.. 2020. Optimal tuned mass-damper-inerter (TMDI) design in wind-excited tall buildings for occupants’ comfort serviceability performance and energy harvesting. Engineering Structures. 204: 109904 DOI: 10.1016/j.engstruct.2019.109904.
  • Li, C., Cao, L., 2019. High performance active tuned mass damper inerter for structures under the ground acceleration. Earthquake and Structures. 16(2): 149–163. DOI: 10.12989/eas.2019.16.2.149.
  • Collette, C., Chesné, S., 2016. Robust hybrid mass damper. Journal of Sound and Vibration. 375: 19–27. DOI: 10.1016/j.jsv.2016.04.030.
  • Ali, SF., Ramaswamy, A., 2009. Testing and modeling of MR damper and its application to SDOF systems using integral backstepping technique. Journal of Dynamic Systems, Measurement and Control, Transactions of the ASME 131(2): 1–11. DOI: 10.1115/1.3072154.
  • Bitaraf, M., Ozbulut, OE., Hurlebaus, S., Barroso, L., 2010. Application of semi-active control strategies for seismic protection of buildings with MR dampers. Engineering Structures. 32(10): 3040–3047. DOI: 10.1016/j.engstruct.2010.05.023.
  • Etedali, S., Sohrabi, MR., Tavakoli, S., 2013. Optimal PD/PID control of smart base isolated buildings equipped with piezoelectric friction dampers. Earthquake Engineering and Engineering Vibration. 12(1): 39–54.
  • Etedali, S., Zamani, AA., Tavakoli, S., A 2018. GBMO-based PIλDμ controller for vibration mitigation of seismic-excited structures. Automation in Construction. 87: 1–12. DOI: 10.1016/j.autcon.2017.12.005.
  • Ulusoy, S., Nigdeli, SM., Bekdaş, G., 2021. Novel metaheuristicbased tuning of PID controllers for seismic structures and verification of robustness. Journal of Building Engineering 33: 101647. DOI: 10.1016/j.jobe.2020.101647.
  • Zhang, Y., Li, L., Guo, Y., Zhang, X., 2018. Bidirectional wind response control of 76-story benchmark building using active mass damper with a rotating actuator. Structural Control and Health Monitoring. 25(10): e2216. DOI: 10.1002/stc.2216.
  • Huang, YJ., Kuo, TC., Chang, SH., 2008. Adaptive sliding-mode control for nonlinear systems with uncertain parameters. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 38(2): 534–539. DOI: 10.1109/TSMCB.2007.910740.
  • Guclu, R., 2006. Sliding mode and PID control of a structural system against earthquake. Mathematical and Computer Modelling 44(1–2): 210–217. DOI: 10.1016/j.mcm.2006.01.014.
  • Ouyang, Y., Shi, W., Shan, J., Spencer, BF., 2019. Backstepping adaptive control for real-time hybrid simulation including servo-hydraulic dynamics. Mechanical Systems and Signal Processing 130: 732–754.. DOI: 10.1016/j.ymssp.2019.05.042.
  • Ümütlü, R.C., Ozturk, H., Bidikli, B., 2021. A robust adaptive control design for active tuned mass damper systems of multistory buildings. JVC/Journal of Vibration and Control 27(23-24), 2765-2777. DOI: 10.1177/1077546320966236.
  • Ümütlü, R.C., Bidikli, B., Ozturk, H., 2021. A backstepping control design for ATMD systems of building structure against earthquake excitations in the presence of parametric uncertainty. Structural Control and Health Monitoring. 29(3): e2893. DOI: 10.1002/stc.2893
  • Hacioglu, Y., Yagiz, N., 2012. Adaptive backstepping control with estimation for the vibration isolation of buildings. JVC/Journal of Vibration and Control 18(13): 1996–2005. DOI: 10.1177/1077546311429052.
  • Krstic, M., Smyshlyaev, A., 2007. Backstepping boundary control for first order hyperbolic PDEs and application to systems with actuator and sensor delays. Proceedings of the IEEE Conference on Decision and Control 57(9): 225–230. DOI: 10.1109/CDC.2007.4434474.
  • Holzer, TL., Barka, AA., Carver, D., Celebi, M., Cranswick, E., Dawson, T., 2000. Implications for earthquake risk reduction in the United States from the Kocaeli, Turkey, earthquake of August 17, 1999. vol. 1193. US Government Printing Office;
  • Guclu, R., Yazici, H., 2008. Vibration control of a structure with ATMD against earthquake using fuzzy logic controllers. Journal of Sound and Vibration. 318(1–2): 36–49. DOI: 10.1016/j.jsv.2008.03.058.
There are 23 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Research Article
Authors

Rafet Can Ümütlü 0000-0002-0793-4979

Hasan Öztürk 0000-0002-8308-8428

Barış Bıdıklı This is me 0000-0001-8994-0012

Early Pub Date May 10, 2022
Publication Date May 16, 2022
Published in Issue Year 2022 Volume: 24 Issue: 71

Cite

APA Ümütlü, R. C., Öztürk, H., & Bıdıklı, B. (2022). An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 24(71), 571-579. https://doi.org/10.21205/deufmd.2022247121
AMA Ümütlü RC, Öztürk H, Bıdıklı B. An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects. DEUFMD. May 2022;24(71):571-579. doi:10.21205/deufmd.2022247121
Chicago Ümütlü, Rafet Can, Hasan Öztürk, and Barış Bıdıklı. “An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi 24, no. 71 (May 2022): 571-79. https://doi.org/10.21205/deufmd.2022247121.
EndNote Ümütlü RC, Öztürk H, Bıdıklı B (May 1, 2022) An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24 71 571–579.
IEEE R. C. Ümütlü, H. Öztürk, and B. Bıdıklı, “An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects”, DEUFMD, vol. 24, no. 71, pp. 571–579, 2022, doi: 10.21205/deufmd.2022247121.
ISNAD Ümütlü, Rafet Can et al. “An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen ve Mühendislik Dergisi 24/71 (May 2022), 571-579. https://doi.org/10.21205/deufmd.2022247121.
JAMA Ümütlü RC, Öztürk H, Bıdıklı B. An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects. DEUFMD. 2022;24:571–579.
MLA Ümütlü, Rafet Can et al. “An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects”. Dokuz Eylül Üniversitesi Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, vol. 24, no. 71, 2022, pp. 571-9, doi:10.21205/deufmd.2022247121.
Vancouver Ümütlü RC, Öztürk H, Bıdıklı B. An Adaptive Controller Design for ATMD System Used in Structures Under the Effect of Unknown Nonlinear Effects. DEUFMD. 2022;24(71):571-9.

Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Dekanlığı Tınaztepe Yerleşkesi, Adatepe Mah. Doğuş Cad. No: 207-I / 35390 Buca-İZMİR.